Unravelling the microRNA-chromatin remodelling circuitry that drives myogenesis

解开驱动肌生成的 microRNA-染色质重塑电路

基本信息

  • 批准号:
    BB/N007034/1
  • 负责人:
  • 金额:
    $ 66.37万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

THE 'BIG' PICTURE: Multi-cellular organisms contain many distinct cell types with very specialized functions. For example, we need skeletal muscle to be able to move while our skin prevents dehydration and protects us from injury and infections. Amazingly all these different cells arise from a single cell, the fertilized egg. The development of an embryo begins when the egg starts dividing to give rise to many cells. The cells are initially multi-potent, but they gradually become specialized and restricted to perform specific tasks. This cell-lineage restriction is regulated by factors that influence the activity of genes and regulate the accessibility of the genome in the nucleus of the cell. Some genes are 'off' and DNA is packaged tightly, other regions are more loosely packaged and therefore 'open' and accessible to factors that can switch a gene 'on'. If a gene is 'on', it means the gene will be expressed and actively transcribed. The regulation of gene activity is crucial for cells to become specialised in their functions.THE QUESTION: We are interested in the molecules that control the development of muscle in an embryo. Why do progenitor cells develop into muscle rather than other related cell types, such as fat, cartilage, bone or connective tissue? Our studies focus on a class of RNA molecules, which we found regulate the factors that control the accessibility of the genome. These non-coding RNAs were discovered recently and because they are very small, they were called 'microRNAs' (miRs), they control the translation of genes into protein - a fundamental job required in all cells. WHY IS THIS IMPORTANT? Regulating the accessibility of the genome is very important during cellular differentiation in embryo development. Understanding this genetic programme is also important for muscle regeneration and repair after injury or long-term bed rest. The process of cell lineage determination is also crucial for the differentiation of stem cells, or for the reprogramming of already specialized cells towards a different fate. We know many of the components involved, but we still do not understand in detail how they function, or how they are put together. We recently discovered that microRNAs influence the composition of these 'reprogramming' complexes and we have a well-defined system in which to study this more systematically. This offers the unique opportunity to identify all of the important players and will provide a deeper mechanistic insight at the molecular level. This is needed, not only to fully understand how specialized cells form in developing embryos, but also to be able to use stem cells in regenerative medicine and tissue engineering, emerging fields of increasing importance and with significant future potential for medicine and health. We will learn how an embryo makes normal, healthy, working muscle and this will in the long-term benefit people who suffer from various conditions that affect muscle health or help to alleviate age related muscle-loss.EXPERIMENTAL MODEL SYSTEM: We use very early chick embryos, which are very similar in morphology to early human embryos, to investigate the roles of important microRNAs present in muscle. We will use protocols to identify how they affect the the factors that control the accessibility of the genome in naïve and differentiating muscle cells. We have experience with these state-of-the-art molecular methods in the chick embryo, an accessible experimental system and we have assembled a highly skilled team of researchers to execute this programme of research.
“大”图:多细胞生物体包含许多具有非常专门功能的不同细胞类型。例如,我们需要骨骼肌能够移动,而我们的皮肤可以防止脱水,保护我们免受伤害和感染。令人惊讶的是,所有这些不同的细胞都来自一个细胞,受精卵。胚胎的发育始于卵子开始分裂产生许多细胞。这些细胞最初是多能的,但它们逐渐变得特化,并被限制执行特定的任务。这种细胞谱系限制受到影响基因活性和调节细胞核中基因组可及性的因素的调节。一些基因是“关闭”的,DNA是紧密包装的,其他区域包装得更松散,因此是“开放”的,可以接触到可以打开基因的因子。如果一个基因是“开”,这意味着该基因将被表达和积极转录。基因活性的调节对于细胞功能的专门化至关重要。问题:我们对控制胚胎肌肉发育的分子感兴趣。为什么祖细胞发育成肌肉而不是其他相关的细胞类型,如脂肪,软骨,骨或结缔组织?我们的研究集中在一类RNA分子上,我们发现它们调节着控制基因组可及性的因素。这些非编码RNA是最近发现的,由于它们非常小,因此被称为“微小RNA”(miRs),它们控制基因翻译成蛋白质--这是所有细胞都需要的基本工作。为什么这很重要?调控基因组的可及性在胚胎发育的细胞分化过程中非常重要。了解这种遗传程序对于受伤或长期卧床休息后的肌肉再生和修复也很重要。细胞谱系确定的过程对于干细胞的分化或对于已经特化的细胞朝向不同命运的重编程也是至关重要的。我们知道许多相关的组成部分,但我们仍然不了解它们如何运作,或者它们是如何组合在一起的。我们最近发现microRNA影响这些“重编程”复合物的组成,我们有一个明确的系统来更系统地研究这一点。这为识别所有重要参与者提供了独特的机会,并将在分子水平上提供更深入的机制见解。这是必要的,不仅要充分了解专门的细胞如何在胚胎发育中形成,而且要能够在再生医学和组织工程中使用干细胞,这些新兴领域越来越重要,未来在医学和健康方面具有巨大的潜力。我们将了解胚胎如何使正常的,健康的,工作的肌肉,这将在长期受益的人谁遭受的各种条件,影响肌肉健康或有助于减轻年龄相关的肌肉损失。实验模型系统:我们使用非常早期的鸡胚胎,这是非常相似的形态早期人类胚胎,调查肌肉中存在的重要microRNA的作用。我们将使用协议来确定它们如何影响控制幼稚和分化肌细胞中基因组可及性的因素。我们在鸡胚中拥有这些最先进的分子方法的经验,这是一个可访问的实验系统,我们已经组建了一支高技能的研究人员团队来执行这项研究计划。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Pax6 master control gene initiates spontaneous retinal development via a self-organising Turing network
Pax6主控基因通过自组织图灵网络启动自发视网膜发育
  • DOI:
    10.1101/583807
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Grocott T
  • 通讯作者:
    Grocott T
Characterising open chromatin in chick embryos identifies cis-regulatory elements important for paraxial mesoderm formation and axis extension.
  • DOI:
    10.1038/s41467-021-21426-7
  • 发表时间:
    2021-02-19
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Mok GF;Folkes L;Weldon SA;Maniou E;Martinez-Heredia V;Godden AM;Williams RM;Sauka-Spengler T;Wheeler GN;Moxon S;Münsterberg AE
  • 通讯作者:
    Münsterberg AE
The Pax6 master control gene initiates spontaneous retinal development via a self-organising Turing network.
  • DOI:
    10.1242/dev.185827
  • 发表时间:
    2020-12-23
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Grocott T;Lozano-Velasco E;Mok GF;Münsterberg AE
  • 通讯作者:
    Münsterberg AE
4D imaging reveals stage dependent random and directed cell motion during somite morphogenesis
4D 成像揭示体节形态发生过程中阶段依赖性随机和定向细胞运动
  • DOI:
    10.1101/280883
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    McColl J
  • 通讯作者:
    McColl J
4D imaging reveals stage dependent random and directed cell motion during somite morphogenesis.
  • DOI:
    10.1038/s41598-018-31014-3
  • 发表时间:
    2018-08-23
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    McColl J;Mok GF;Lippert AH;Ponjavic A;Muresan L;Münsterberg A
  • 通讯作者:
    Münsterberg A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrea Munsterberg其他文献

01-P004 MicroRNAs in muscle development
  • DOI:
    10.1016/j.mod.2009.06.005
  • 发表时间:
    2009-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dylan Sweetman;Kasia Goljanek;Tina Rathjen;Tamas Dalmay;Andrea Munsterberg
  • 通讯作者:
    Andrea Munsterberg
13-P092 Klhl31 is regulated by myogenic signals in developing somites and modulates Wnt signaling in vitro and in vivo
  • DOI:
    10.1016/j.mod.2009.06.565
  • 发表时间:
    2009-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alaa Abou-Elhamd;Oliver Cooper;Carla Garcia-Morales;Grant Wheeler;Andrea Munsterberg
  • 通讯作者:
    Andrea Munsterberg

Andrea Munsterberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrea Munsterberg', 18)}}的其他基金

Functional analysis of alkylglycerol monooxygenase; an unexpected modulator of Wnt signalling and embryogenesis
烷基甘油单加氧酶的功能分析;
  • 批准号:
    BB/W017032/1
  • 财政年份:
    2023
  • 资助金额:
    $ 66.37万
  • 项目类别:
    Research Grant
Investigating the role of the primary cilium in muscle regeneration
研究初级纤毛在肌肉再生中的作用
  • 批准号:
    MR/R000549/1
  • 财政年份:
    2018
  • 资助金额:
    $ 66.37万
  • 项目类别:
    Research Grant
Investigating cellular plasticity in the avian primitive streak
研究鸟类原条细胞的可塑性
  • 批准号:
    BB/N002970/1
  • 财政年份:
    2016
  • 资助金额:
    $ 66.37万
  • 项目类别:
    Research Grant
The role of miR-128, a novel microRNA in somite development
miR-128(一种新型微小RNA)在体节发育中的作用
  • 批准号:
    BB/K003437/1
  • 财政年份:
    2013
  • 资助金额:
    $ 66.37万
  • 项目类别:
    Research Grant
Investigating microRNA:target gene interactions in myogenesis
研究 microRNA:肌生成中靶基因的相互作用
  • 批准号:
    BB/H019979/1
  • 财政年份:
    2010
  • 资助金额:
    $ 66.37万
  • 项目类别:
    Research Grant
Investigating FGF ERK MAP kinase signalling in vertebrate skeletal muscle differentiation
研究脊椎动物骨骼肌分化中的 FGF ERK MAP 激酶信号传导
  • 批准号:
    G0600757/1
  • 财政年份:
    2007
  • 资助金额:
    $ 66.37万
  • 项目类别:
    Research Grant
The role of microRNAs miR206 and miR133 in somite development and myogenesis
microRNA miR206 和 miR133 在体节发育和肌生成中的作用
  • 批准号:
    BB/D016444/1
  • 财政年份:
    2006
  • 资助金额:
    $ 66.37万
  • 项目类别:
    Research Grant

相似国自然基金

枳实通降颗粒通过LncRNA TUG1/microRNA-9-5p/MAPK信号轴调控巨噬细胞代谢重编程防治POI及相关性肺损伤的机制研究
  • 批准号:
    2025JJ90028
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
长链非编码RNA PURPL通过microRNA-342/IGF1R轴对恶性黑色素瘤生物学行为的调控研究
  • 批准号:
    2025JJ80880
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
骨肉瘤细胞源性外泌体circHIPK3竞争性抑制microRNA-132-3p上调CTGF促进骨肉瘤肺转移的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
有氧运动经microRNA预防肥胖相关性肾损伤的机制研究
  • 批准号:
    JCZRQN202500941
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
新型有机材料聚集增强光电性能用于高灵敏MicroRNA检测研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
抑郁症前额叶细胞外囊泡microRNA转录组和蛋白组特征研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于生物膜仿生传感界面的肿瘤来源外泌体microRNA即时检测
  • 批准号:
    JCZRYB202500861
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于“双钥匙-锁”识别策略的结直肠癌外泌体Argonaute2-microRNA原位检测方法研究
  • 批准号:
    MS25B050018
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
细胞microRNA靶向MYH9基因抑制猪流行性腹泻病毒感染的作用机制研究
  • 批准号:
    2025JJ60189
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Impact of Chromatin Architecture on early microRNA Biogenesis.
染色质结构对早期 microRNA 生物发生的影响。
  • 批准号:
    565084-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 66.37万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Harnessing artificial microRNA clusters against glioblastoma epigenetic plasticity and resistance to therapy
利用人工 microRNA 簇对抗胶质母细胞瘤表观遗传可塑性和治疗耐药性
  • 批准号:
    10116510
  • 财政年份:
    2020
  • 资助金额:
    $ 66.37万
  • 项目类别:
MicroRNA regulation of neural tube closure
MicroRNA对神经管闭合的调节
  • 批准号:
    10570194
  • 财政年份:
    2020
  • 资助金额:
    $ 66.37万
  • 项目类别:
Harnessing Artificial MicroRNA Clusters Against Glioblastoma Epigenetic Plasticity and Resistance to Therapy
利用人工 MicroRNA 簇对抗胶质母细胞瘤表观遗传可塑性和治疗耐药性
  • 批准号:
    10543193
  • 财政年份:
    2020
  • 资助金额:
    $ 66.37万
  • 项目类别:
MicroRNA regulation of neural tube closure
MicroRNA对神经管闭合的调节
  • 批准号:
    10352211
  • 财政年份:
    2020
  • 资助金额:
    $ 66.37万
  • 项目类别:
MicroRNA regulation of neural tube closure
MicroRNA对神经管闭合的调节
  • 批准号:
    9885445
  • 财政年份:
    2020
  • 资助金额:
    $ 66.37万
  • 项目类别:
MicroRNA-based epigenetic approach to induce fetal hemoglobin
基于 MicroRNA 的表观遗传学方法诱导胎儿血红蛋白
  • 批准号:
    10212449
  • 财政年份:
    2020
  • 资助金额:
    $ 66.37万
  • 项目类别:
Harnessing artificial microRNA clusters against glioblastoma epigenetic plasticity and resistance to therapy
利用人工 microRNA 簇对抗胶质母细胞瘤表观遗传可塑性和治疗耐药性
  • 批准号:
    10376238
  • 财政年份:
    2020
  • 资助金额:
    $ 66.37万
  • 项目类别:
MicroRNA regulation of neural crest differentiation
MicroRNA对神经嵴分化的调节
  • 批准号:
    10406160
  • 财政年份:
    2019
  • 资助金额:
    $ 66.37万
  • 项目类别:
MicroRNA regulation of neural crest differentiation
MicroRNA对神经嵴分化的调节
  • 批准号:
    10165772
  • 财政年份:
    2019
  • 资助金额:
    $ 66.37万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了