Investigating cellular plasticity in the avian primitive streak
研究鸟类原条细胞的可塑性
基本信息
- 批准号:BB/N002970/1
- 负责人:
- 金额:$ 49.97万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
THE 'BIG' PICTURE: A fascinating question in biology asks how multicellular organisms arise from a single cell: the fertilized egg. During embryogenesis naïve and still plastic progenitor cells interact with each other, first to form different embryonic layers and to organize the main body axes, and later to build specialized organs with highly differentiated cell types and functions. The cells in an embryo coordinate these complex events by communicating with each other using molecular signalling mechanisms. Cell-cell communication is important throughout the life of an organism, for example for repair after injury or for growth and remodelling. A good example for this is skeletal muscle, a tissue that can regenerate and rebuild itself (after injury or after exercise). This is possible, because there are specialized cells in muscle, but also in other tissues, which can divide when stimulated and make more differentiated cells when needed. These specialized cells are tissue-resident stem cells and they respond to the same communication signals that act in the embryo. We need to understand the detailed intricacies of these signals, as they can have different effects depending on the context in which they act. Defects in signalling mechanisms can be detrimental to an embryo, but they can also lead to diseases in adults such as cancer, when cells "mis-behave" and ignore the signals or respond incorrectly and grow uncontrollably as a result.EXPERIMENTAL MODEL SYSTEM: We have used the early chick embryo, which is very similar in its morphology to early human embryos, and investigated the effects of two important cell-cell signaling pathways. From these studies we know that BMP and WNT signals have different effects in different types of early progenitor cells, depending on the stage of development. We also know that these pathways act via a common transcriptional regulator (SMAD), which can switch other genes 'on' or 'off'. In a "HH stage 3" embryo the signals change how cells migrate, but in a "HH stage 4" embryo the SAME signals have no effect on migration but instead alter the fate of the cells; thus at this later stage the cells respond by changing what they will become. We will use state-of-the-art molecular protocols to identify the genes that are switched on or off by the SMAD-switch in these cell populations. We have experience with these methods in the chick embryo, an accessible experimental system and we have assembled a highly skilled team of researchers to execute this programme of research.WHY IS THIS IMPORTANT? BMP and Wnt signaling are widely used cell communication signals that act in many tissues and organs. We know many of the components of the pathways, but we still do not understand why cellular responses to the (apparently) same trigger vary depending on the context. We now have a well-defined system where the cellular response to the same signals has been characterized and is quite divergent: EITHER cell migration is affected OR cell specification is affected. This gives us the unique opportunity to identify which genes have been switched on or off in the responding cells and provide a deeper mechanistic insight at the molecular level. This is needed in order to fully understand how specialised cells form and how they build functional organs. This is not only relevant in developing embryos, if things go wrong the embryo will not survive or become malformed, but is also relevant for stem cell science and tissue engineering, emerging fields of increasing importance and with significant future potential for medicine and health.SPECIFIC OBJECTIVES: We will capitalize on our recent observations and use our well established model system to (1) identify genes that are differentially expressed in response to BMP and Wnt signaling, and to (2) test the expression and function of these genes in both cell migration and cell specification/differentiation.
“大”图景:生物学中一个迷人的问题是多细胞生物如何从一个单细胞(受精卵)产生。在胚胎发生过程中,幼稚的和仍然可塑的祖细胞相互作用,首先形成不同的胚胎层并组织主体轴,然后建立具有高度分化的细胞类型和功能的专门器官。胚胎中的细胞通过使用分子信号机制相互通信来协调这些复杂的事件。细胞间通讯在生物体的整个生命过程中都很重要,例如对于损伤后的修复或生长和重塑。一个很好的例子是骨骼肌,一种可以再生和重建自身的组织(在受伤或运动后)。这是可能的,因为在肌肉中有专门的细胞,但在其他组织中也有,它们可以在受到刺激时分裂,并在需要时产生更多分化的细胞。这些特化细胞是组织驻留干细胞,它们对胚胎中相同的通信信号做出反应。我们需要了解这些信号的详细复杂性,因为它们可以根据其作用的上下文产生不同的影响。信号传导机制的缺陷可能对胚胎有害,但也可能导致成年人的疾病,如癌症,当细胞“行为不端”,忽视信号或反应不正确,从而无法控制地生长。实验模型系统:我们使用了早期鸡胚胎,这是非常相似的形态,早期人类胚胎,并研究了两个重要的细胞-细胞信号通路的影响。从这些研究中,我们知道BMP和WNT信号在不同类型的早期祖细胞中具有不同的作用,这取决于发育阶段。我们还知道这些途径通过一个共同的转录调节因子(SMAD)起作用,该因子可以“打开”或“关闭”其他基因。在“HH 3期”胚胎中,这些信号改变了细胞的迁移方式,但在“HH 4期”胚胎中,这些信号对迁移没有影响,而是改变了细胞的命运;因此,在这个后期阶段,细胞通过改变它们将成为什么来做出反应。我们将使用最先进的分子方案来鉴定这些细胞群中由SMAD开关打开或关闭的基因。我们在鸡胚胎中使用这些方法的经验,这是一个易于使用的实验系统,并且我们已经组建了一支高技能的研究人员团队来执行这项研究计划。为什么这很重要?BMP和Wnt信号是广泛使用的细胞通讯信号,在许多组织和器官中起作用。我们知道这些通路的许多组成部分,但我们仍然不明白为什么细胞对(显然)相同触发的反应会因环境而异。我们现在有一个明确的系统,其中细胞对相同信号的反应已经被表征并且是相当不同的:细胞迁移受到影响或细胞特化受到影响。这给了我们一个独特的机会来确定哪些基因在响应细胞中被打开或关闭,并在分子水平上提供更深入的机制见解。这是为了充分了解专门的细胞如何形成以及它们如何构建功能器官所必需的。这不仅与胚胎发育有关,如果出现问题,胚胎将无法存活或畸形,而且与干细胞科学和组织工程有关,这些新兴领域的重要性日益增加,未来在医学和健康方面具有巨大潜力。我们将利用我们最近的观察,并使用我们完善的模型系统(1)鉴定响应BMP和Wnt信号传导而差异表达的基因,和(2)测试这些基因在细胞迁移和细胞特化/分化中的表达和功能。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrea Munsterberg其他文献
01-P004 MicroRNAs in muscle development
- DOI:
10.1016/j.mod.2009.06.005 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:
- 作者:
Dylan Sweetman;Kasia Goljanek;Tina Rathjen;Tamas Dalmay;Andrea Munsterberg - 通讯作者:
Andrea Munsterberg
13-P092 Klhl31 is regulated by myogenic signals in developing somites and modulates Wnt signaling in vitro and in vivo
- DOI:
10.1016/j.mod.2009.06.565 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:
- 作者:
Alaa Abou-Elhamd;Oliver Cooper;Carla Garcia-Morales;Grant Wheeler;Andrea Munsterberg - 通讯作者:
Andrea Munsterberg
Andrea Munsterberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrea Munsterberg', 18)}}的其他基金
Functional analysis of alkylglycerol monooxygenase; an unexpected modulator of Wnt signalling and embryogenesis
烷基甘油单加氧酶的功能分析;
- 批准号:
BB/W017032/1 - 财政年份:2023
- 资助金额:
$ 49.97万 - 项目类别:
Research Grant
Investigating the role of the primary cilium in muscle regeneration
研究初级纤毛在肌肉再生中的作用
- 批准号:
MR/R000549/1 - 财政年份:2018
- 资助金额:
$ 49.97万 - 项目类别:
Research Grant
Unravelling the microRNA-chromatin remodelling circuitry that drives myogenesis
解开驱动肌生成的 microRNA-染色质重塑电路
- 批准号:
BB/N007034/1 - 财政年份:2016
- 资助金额:
$ 49.97万 - 项目类别:
Research Grant
The role of miR-128, a novel microRNA in somite development
miR-128(一种新型微小RNA)在体节发育中的作用
- 批准号:
BB/K003437/1 - 财政年份:2013
- 资助金额:
$ 49.97万 - 项目类别:
Research Grant
Investigating microRNA:target gene interactions in myogenesis
研究 microRNA:肌生成中靶基因的相互作用
- 批准号:
BB/H019979/1 - 财政年份:2010
- 资助金额:
$ 49.97万 - 项目类别:
Research Grant
Investigating FGF ERK MAP kinase signalling in vertebrate skeletal muscle differentiation
研究脊椎动物骨骼肌分化中的 FGF ERK MAP 激酶信号传导
- 批准号:
G0600757/1 - 财政年份:2007
- 资助金额:
$ 49.97万 - 项目类别:
Research Grant
The role of microRNAs miR206 and miR133 in somite development and myogenesis
microRNA miR206 和 miR133 在体节发育和肌生成中的作用
- 批准号:
BB/D016444/1 - 财政年份:2006
- 资助金额:
$ 49.97万 - 项目类别:
Research Grant
相似国自然基金
基于MFSD2A调控血迷路屏障跨细胞囊泡转运机制的噪声性听力损失防治研究
- 批准号:82371144
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
rhTβ4增强间充质干细胞调节T细胞代谢重塑治疗干眼的机制研究
- 批准号:32000530
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
胰岛素和细菌信号协同调节巨噬细胞免疫反应的作用
- 批准号:92057105
- 批准年份:2020
- 资助金额:89.0 万元
- 项目类别:重大研究计划
聚谷氨酰胺(PolyQ)疾病致病蛋白构象多态性的研究及应用
- 批准号:31970748
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
MAPK11通过RNA结合蛋白ELAVL1调控HTT水平的机制与病理意义研究
- 批准号:31970747
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
细胞代谢重组过程中蛋白质组热稳定性分析
- 批准号:31970706
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Atg4B可逆氧化修饰的作用机制及其对自噬的调节研究
- 批准号:31970699
- 批准年份:2019
- 资助金额:50.0 万元
- 项目类别:面上项目
用识别EBV相关淋巴瘤抗原多肽的T细胞受体做转基因免疫治疗
- 批准号:81041002
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
半群代数和半群表示
- 批准号:10961014
- 批准年份:2009
- 资助金额:18.0 万元
- 项目类别:地区科学基金项目
Cellular & Molecular Immunology
- 批准号:30824806
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
Investigating the Regulatory Roles of Histone Chaperones in Cellular Plasticity
研究组蛋白伴侣在细胞可塑性中的调节作用
- 批准号:
10714076 - 财政年份:2023
- 资助金额:
$ 49.97万 - 项目类别:
Investigating the Abundance, Fate, and Function of Secondary Lymphoid Organ Resident Memory T cells
研究次级淋巴器官常驻记忆 T 细胞的丰度、命运和功能
- 批准号:
10679775 - 财政年份:2023
- 资助金额:
$ 49.97万 - 项目类别:
Investigating the role of retinal astrocytes in exercise-induced retinal neuroprotection
研究视网膜星形胶质细胞在运动引起的视网膜神经保护中的作用
- 批准号:
10484539 - 财政年份:2022
- 资助金额:
$ 49.97万 - 项目类别:
Investigating the role of NG2-glia in the development of epilepsy
研究 NG2-胶质细胞在癫痫发展中的作用
- 批准号:
10393332 - 财政年份:2021
- 资助金额:
$ 49.97万 - 项目类别:
Investigating the neural mechanisms underlying language recovery through rhythm therapy in Aphasia
研究失语症通过节律疗法恢复语言的神经机制
- 批准号:
10250678 - 财政年份:2020
- 资助金额:
$ 49.97万 - 项目类别:
Investigating cellular plasticity in the avian primitive streak
研究鸟类原条细胞的可塑性
- 批准号:
BB/N002326/2 - 财政年份:2016
- 资助金额:
$ 49.97万 - 项目类别:
Research Grant
Investigating cellular plasticity in the avian primitive streak
研究鸟类原条细胞的可塑性
- 批准号:
BB/N002326/1 - 财政年份:2016
- 资助金额:
$ 49.97万 - 项目类别:
Research Grant
Investigating the RhoA/ROCK pathway for the treatment of Alzheimer's disease
研究治疗阿尔茨海默病的 RhoA/ROCK 通路
- 批准号:
8898696 - 财政年份:2014
- 资助金额:
$ 49.97万 - 项目类别:
Investigating the RhoA/ROCK pathway for the treatment of Alzheimer's disease
研究治疗阿尔茨海默病的 RhoA/ROCK 通路
- 批准号:
8874382 - 财政年份:2014
- 资助金额:
$ 49.97万 - 项目类别: