Seeing the light: automatically identifying key anatomical changes in light sheet microscopy images of plant roots
看到光:自动识别植物根部光片显微镜图像中的关键解剖变化
基本信息
- 批准号:BB/N018575/1
- 负责人:
- 金额:$ 56.31万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
To meet an increasing demand on food production, there is more need now than ever before to understand and improve the efficiency of crop growth and yield. Here, we consider the anatomical changes of roots under low phosphate levels that give rise to important architectural changes in the root system. The study of these anatomical changes in features such as cell divisions over time is only possible to due to recent technological advances in imaging and expertise in developing analysis software. For the first time, we aim to find the origins of these anatomical changes.Phosphorus is one of the key macronutrients (alongside nitrogen and potassium) required for healthy plant growth, and is a widely used constituent of fertilizer used in commercial crop production. Phosphorus is a limited strategic resource: it is derived from a finite natural supply. Understanding phosphorus use and its effects on growth in plants is therefore of key importance to Global Food Security. Phosphorus mobility in the soil is limited by slow diffusion, and so areas of low phosphate concentration are created around root system. Much work has been carried out examining the overall architecture of root systems under differing conditions; however, much less is understood about the anatomical changes, and how they develop. There are only a few instances where root anatomical and architectural traits have been combined in a systematic way to select for plants with enhanced nutrient acquisition, but when this has been done the improvements have been staggering . For example, one study in Mozambique selected common bean varieties with shallow root angle (to enhance topsoil exploration) and enhanced root hair growth (to increase contact with the soil), this led to an almost 300% increase in plant biomass on low phosphorus soils, twice that expected from the additive benefits of these traits in isolation. This shows a great importance in understanding anatomical traits and understanding how they respond to low nutrient environments. There are several reasons for our lack of knowledge in adaptive anatomical responses in roots. First, the equipment has not been available to image the plants growing over the time periods these anatomical changes take place. Second, the ability to alter the growth conditions (such as nutrient levels) around the root whilst being imaged has not been possible. Third, discovering subtle anatomical changes in the huge datasets that would be generated is a very challenging manual task. Our work will allow us to overcome these challenges, allowing study of anatomical changes in low phosphorus media dynamically. In this proposal, we use a cutting-edge microscope, a light sheet fluoresence microscope (or LSFM) to image cellular anatomy as plants grow. A key challenge with LSFM time series data is the huge volume of data produced. This requires new analysis methods to permit us to gain biological insight. One such problem is identifying formative divisions that give rise to anatomical patterns in 3D datasets of roots resolved over time. This proposal seeks to automatically identify particular anatomical changes in big datasets. With LSFM it is possible to acquire gigabytes of data per minute. Time course experiments can easily generate tens of gigabytes of data. This turns visualisation and analysis into a bottleneck. We propose a solution. We will use machine learning approaches to allow new software to identify regions of interest within these datasets. We will build visualisation tools which will use the results of these approaches to allow biologists to navigate the data in meaningful ways, rather than blindly moving through the whole dataset. We will use these tools to investigate how root anatomy is altered in plants grown in low nutrient environments.
为了满足日益增长的粮食生产需求,现在比以往任何时候都更需要了解和提高作物生长和产量的效率。在这里,我们考虑了在低磷水平下的根的解剖变化,这些变化引起了根系统中重要的结构变化。随着时间的推移,研究这些特征的解剖变化,如细胞分裂,只有在成像方面的最新技术进步和开发分析软件方面的专业知识才有可能。我们的目标是第一次找到这些解剖变化的起源。磷是植物健康生长所需的关键常量营养素之一(与氮和钾一起),也是商业作物生产中广泛使用的肥料成分。磷是一种有限的战略资源:它来自有限的自然供应。因此,了解磷的使用及其对植物生长的影响对全球粮食安全至关重要。土壤中磷的迁移受到缓慢扩散的限制,因此在根系周围形成了低磷浓度的区域。人们对不同条件下根系的整体构型进行了大量的研究,但对其解剖结构的变化以及它们是如何发展的了解还很少。只有少数情况下,将根的解剖特征和结构特征系统地结合起来,以选择营养含量更高的植物,但一旦做到这一点,改善就会令人震惊。例如,莫桑比克的一项研究选择了根角较浅的菜豆品种(以加强表土勘探)和促进根毛生长(以增加与土壤的接触),这导致低磷土壤上的植物生物量增加了近300%,是隔离这些性状的加性效益预期的两倍。这对于了解植物的解剖特征和了解它们对低营养环境的反应具有重要意义。我们对根的适应性解剖反应缺乏了解有几个原因。首先,设备还无法对这些解剖变化发生的时间段内生长的植物进行成像。其次,在成像的同时改变根部周围的生长条件(如营养水平)的能力是不可能的。第三,在将生成的巨大数据集中发现细微的解剖变化是一项非常具有挑战性的人工任务。我们的工作将使我们能够克服这些挑战,能够动态地研究低磷介质中的解剖变化。在这项建议中,我们使用尖端显微镜,光片荧光显微镜(或LSFM)来成像植物生长过程中的细胞解剖。LSFM时间序列数据的一个关键挑战是产生的数据量巨大。这需要新的分析方法,使我们能够获得生物学上的洞察力。一个这样的问题是识别形成的分区,这些分区在3D数据集中产生解剖模式,这些数据集中的根随着时间的推移而分解。这项提议寻求自动识别大数据集中的特定解剖变化。使用LSFM,可以每分钟获取千兆字节的数据。时间进程实验可以很容易地产生数十亿字节的数据。这将可视化和分析变成了一个瓶颈。我们提出了一个解决方案。我们将使用机器学习方法来允许新软件识别这些数据集中的感兴趣区域。我们将构建可视化工具,它将使用这些方法的结果来允许生物学家以有意义的方式导航数据,而不是盲目地遍历整个数据集。我们将使用这些工具来研究在低营养环境中生长的植物的根解剖是如何改变的。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cellular Patterning of Arabidopsis Roots Under Low Phosphate Conditions.
- DOI:10.3389/fpls.2018.00735
- 发表时间:2018
- 期刊:
- 影响因子:5.6
- 作者:Janes G;von Wangenheim D;Cowling S;Kerr I;Band L;French AP;Bishopp A
- 通讯作者:Bishopp A
Deep machine learning provides state-of-the-art performance in image-based plant phenotyping.
- DOI:10.1093/gigascience/gix083
- 发表时间:2017-10-01
- 期刊:
- 影响因子:9.2
- 作者:Pound MP;Atkinson JA;Townsend AJ;Wilson MH;Griffiths M;Jackson AS;Bulat A;Tzimiropoulos G;Wells DM;Murchie EH;Pridmore TP;French AP
- 通讯作者:French AP
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew French其他文献
Detection of influenza a subtypes in community‐based surveillance
社区监测中甲型流感亚型的检测
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:12.7
- 作者:
A. Boon;Andrew French;D. Fleming;M. Zambon - 通讯作者:
M. Zambon
Glucose-Insulin-Potassium Therapy in Patients with ST-Segment Elevation Myocardial Infarction: Diaz R, Goyal A, Mehta, SR, et al. JAMA 2007;298:2399–405
- DOI:
10.1016/j.jemermed.2008.02.042 - 发表时间:
2008-05-01 - 期刊:
- 影响因子:
- 作者:
Andrew French - 通讯作者:
Andrew French
Male With Facial Trauma
- DOI:
10.1016/j.annemergmed.2011.02.015 - 发表时间:
2011-05-01 - 期刊:
- 影响因子:
- 作者:
Sage Wexner;Leslie Armstrong;Andrew French;Jennie A. Buchanan - 通讯作者:
Jennie A. Buchanan
Aortic Perforation with Cardiac Tamponade Two Weeks after Pacemaker Implantation: Kalijusto M, Tønnessen T. J Thorac Cardiovasc Surg 2007;134:502–3
- DOI:
10.1016/j.jemermed.2007.09.009 - 发表时间:
2007-11-01 - 期刊:
- 影响因子:
- 作者:
Andrew French - 通讯作者:
Andrew French
Diagnosing Acute Appendicitis in Adults: Accuracy of Color Doppler Sonography and MDCT Compared with Surgery and Clinical Follow-Up: Gaitini D, Beck-Razi N, Mor-Yosef D, et al. AJR Am J Roentgenol 2008;190:1300–6
- DOI:
10.1016/j.jemermed.2008.06.007 - 发表时间:
2008-10-01 - 期刊:
- 影响因子:
- 作者:
Andrew French - 通讯作者:
Andrew French
Andrew French的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew French', 18)}}的其他基金
23-AIBIO - Artificial Intelligence in the Biosciences - AIBIO-UK (22-AIBN)
23-AIBIO - 生物科学中的人工智能 - AIBIO-UK (22-AIBN)
- 批准号:
BB/Y006933/1 - 财政年份:2023
- 资助金额:
$ 56.31万 - 项目类别:
Research Grant
Data CAMPP (Innovative Training in Data Capture, Analysis and Management for Plant Phenotyping)
Data CAMPP(植物表型数据采集、分析和管理创新培训)
- 批准号:
MR/V038850/1 - 财政年份:2021
- 资助金额:
$ 56.31万 - 项目类别:
Research Grant
U.S-UK Cooperative Research: Hypervalent Iodine Chemistry
美英合作研究:高价碘化学
- 批准号:
0209956 - 财政年份:2002
- 资助金额:
$ 56.31万 - 项目类别:
Standard Grant
U.S.-Switzerland Cooperative Research: Chiral Hypervalent Iodine Chemistry
美国-瑞士合作研究:手性高价碘化学
- 批准号:
9976636 - 财政年份:1999
- 资助金额:
$ 56.31万 - 项目类别:
Standard Grant
Introducing NMR into the Techniques and Projects Program in Organic Chemistry Laboratory: A Research - Based Project Experience
将NMR引入有机化学实验室技术与项目计划:基于研究的项目经验
- 批准号:
9972383 - 财政年份:1999
- 资助金额:
$ 56.31万 - 项目类别:
Standard Grant
相似国自然基金
上调间充质干细胞LIGHT、IL-21及
Sig lec-10用于卵巢癌免疫协同增效治疗
的多模态影像学研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
LIGHT/HVEM-亮氨酸轴异常引起蜕膜基质细胞过度衰老致复发流产的机制研究
- 批准号:32370914
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
LIGHT促NLRP3炎症小体活化介导他克莫司所致肾纤维化的作用机制研究
- 批准号:82300855
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
LIGHT-HVEM通路提升CAR-T细胞抗肿瘤活性的机制研究
- 批准号:82202031
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
LIGHT/TNFSF14通路对缺血再灌注肾损伤中细胞铁死亡影响的实验研究
- 批准号:
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
气道上皮细胞经LIGHT/HVEM通路调控哮喘气道微环境内稳态的机制及干预研究
- 批准号:2020A151501040
- 批准年份:2020
- 资助金额:10.0 万元
- 项目类别:省市级项目
MSCs通过免疫刺激因子LIGHT介导抗原缺失变异性乳腺癌的免疫效应及机制
- 批准号:LY21H160003
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
Light助力中国科研团队提升国际影响力
- 批准号:
- 批准年份:2020
- 资助金额:6 万元
- 项目类别:专项基金项目
LIGHT(TNFSF14)诱导子痫前期的机制及其转化医学研究
- 批准号:2019JJ20035
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
Light助力中国科研团队提升国际影响力
- 批准号:
- 批准年份:2019
- 资助金额:5 万元
- 项目类别:专项基金项目
相似海外基金
Dark Data from the White Continent: New Light on Five Decades of Vertebrate Paleontology Collections from the Triassic Fremouw Formation of Antarctica
来自白色大陆的暗数据:对南极洲三叠纪 Fremouw 组的五个十年的脊椎动物古生物学收藏的新认识
- 批准号:
2313242 - 财政年份:2024
- 资助金额:
$ 56.31万 - 项目类别:
Standard Grant
CAREER: CAS: Organic Photochemistry for Light-Driven CO2 Capture and Release
职业:CAS:光驱动二氧化碳捕获和释放的有机光化学
- 批准号:
2338206 - 财政年份:2024
- 资助金额:
$ 56.31万 - 项目类别:
Continuing Grant
CAS: Reductive Functionalization of Carbon Dioxide with Light Olefins
CAS:二氧化碳与轻质烯烃的还原官能化
- 批准号:
2349537 - 财政年份:2024
- 资助金额:
$ 56.31万 - 项目类别:
Standard Grant
CAS: Supported Intermetallic Catalysts for Tandem Conversion of Light Alkanes and CO2
CAS:用于轻质烷烃和 CO2 串联转化的负载型金属间催化剂
- 批准号:
2400183 - 财政年份:2024
- 资助金额:
$ 56.31万 - 项目类别:
Standard Grant
Conference: 2024 Photosensory Receptors and Signal Transduction GRC/GRS: Light-Dependent Molecular Mechanism, Cellular Response and Organismal Behavior
会议:2024光敏受体和信号转导GRC/GRS:光依赖性分子机制、细胞反应和生物体行为
- 批准号:
2402252 - 财政年份:2024
- 资助金额:
$ 56.31万 - 项目类别:
Standard Grant
STTR Phase I: Innovating Micro-Light Emitting Diode (LED) Manufacturing with Novel Quantum Dot Micro-Patterning Technology
STTR 第一阶段:利用新型量子点微图案化技术创新微发光二极管 (LED) 制造
- 批准号:
2335283 - 财政年份:2024
- 资助金额:
$ 56.31万 - 项目类别:
Standard Grant
Structure-guided optimisation of light-driven microalgae cell factories
光驱动微藻细胞工厂的结构引导优化
- 批准号:
DP240101727 - 财政年份:2024
- 资助金额:
$ 56.31万 - 项目类别:
Discovery Projects
Light-Driven Cellulose Nanocrystals Enabled by Photochromic Molecular Switch
通过光致变色分子开关实现光驱动纤维素纳米晶体
- 批准号:
24K17577 - 财政年份:2024
- 资助金额:
$ 56.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Chromaticity-adaptive direct white light generation from luminescent carbogenic nanomaterials coupled with nanophotonic cavity
发光碳原纳米材料与纳米光子腔耦合产生色度自适应直接白光
- 批准号:
24K17589 - 财政年份:2024
- 资助金额:
$ 56.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
- 批准号:
24H00582 - 财政年份:2024
- 资助金额:
$ 56.31万 - 项目类别:
Grant-in-Aid for Scientific Research (A)














{{item.name}}会员




