Optimising acquisition speed in localisation microscopy
优化定位显微镜的采集速度
基本信息
- 批准号:BB/N022696/1
- 负责人:
- 金额:$ 17.09万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fluorescence microscopy is a crucial tool for cell biologists because it allows them to label different proteins with fluorescent molecules (fluorophores) and observe them in live cells. This yields information which can help us to understand diseases, and find new drugs to treat them. Until recently fluorescence microscopy had a major flaw: it could not resolve any features below 200nm. While human cells are at least twenty times this size, there are many parts of a cell which are much smaller. Over the last ten years a number of methods have been developed which allow fluorescence microscopes to image structures below 200nm, and these methods are now becoming standard in fixed (dead) cells. A major challenge in microscopy development is how to apply these methods in live cells, in a way that is reproducible enough that it can be used in cell biology laboratories where there are no experts in the technique. In this proposal we attack this problem with two approaches.Firstly, we will investigate the theoretical limits of localisation microscopy. Localisation microscopy works by taking many images of the sample. The behaviour of the fluorophores is controlled so that in each image only a few of the fluorophores are emitting light. Even though each fluorophore results in a blurred spot, we can find the position of the centre of the spot very accurately. The image of the sample is then built up by putting a point down at the position of all the fluorophores we identify across all the frames. At the moment, people think about localisation microscopy as being similar to other microscopy techniques; you illuminate with light and you get an image, with the quality of the image depending on how good your microscope is and how bright your light is. However, for a localisation image to achieve a high resolution, you have to find the position of lots of fluorophores. Less obviously, the number of frames it takes to get a certain number of fluorophores depends on the structure of your sample, since you cannot image two fluorophores which are too close together. This means that the maximum speed depends on the structure of your sample. We will carry out simulations to work out how the maximum speed depends on the structure, which will allow cell biologists to know in advance what speed can be achieved for a given sample.Secondly, we will develop a method which can examine the raw data from an experiment and determine whether, if you analyse it, you will get an image which reflects the structure of the sample, or if you will get an image with features caused by fitting the positions of fluorophores inaccurately. Currently, it is very hard to work out if this has happened, particularly if you try to get data quickly, which is necessary for live cell experiments. It may be possible to perform a quick test by looking at how the number of fluorophores which is detected changes over time. However, we are likely to need a more sophisticated test. We will use the images from an experiment and create a simulated image where we add a single fluorophore at a known position. We can then run the data analysis and see if the new fluorophore is correctly detected. By moving the fluorophore round, and performing the test on different frames, we will determine if there are particular times or places in the images where the data analysis is not working well. By taking these two approaches, we will give every cell biologist with a localisation microscopy system the tools they need to calculate the maximum speed at which they can image the structure they are interested in. This will bring live cell localisation microscopy out of specialist labs and into the reach of cell biologists. Fixed cell localisation microscopy has already shown us many new and unexpected structures in the cell; by extending this technique into live cells, we will be able to see how these structures change and evolve over time.
荧光显微镜是细胞生物学家的重要工具,因为它允许他们用荧光分子(荧光团)标记不同的蛋白质,并在活细胞中观察它们。这产生的信息可以帮助我们了解疾病,并找到新的药物来治疗它们。直到最近,荧光显微镜还存在一个重大缺陷:它无法分辨200 nm以下的任何特征。虽然人类细胞的大小至少是这个大小的二十倍,但细胞的许多部分要小得多。在过去的十年中,已经开发了许多方法,这些方法允许荧光显微镜对200 nm以下的结构进行成像,这些方法现在已经成为固定(死)细胞的标准方法。显微镜发展的一个主要挑战是如何在活细胞中应用这些方法,以一种可重复的方式,它可以在没有技术专家的细胞生物学实验室中使用。在这个建议中,我们用两种方法来解决这个问题。首先,我们将研究局部化显微镜的理论极限。定位显微镜通过拍摄样品的许多图像来工作。控制荧光团的行为,使得在每个图像中只有少数荧光团发光。即使每个荧光团导致一个模糊的斑点,我们可以非常准确地找到斑点中心的位置。然后,通过在我们在所有帧中识别的所有荧光团的位置处放置一个点来建立样本的图像。目前,人们认为定位显微镜与其他显微镜技术类似;你用光照射,你得到一个图像,图像的质量取决于你的显微镜有多好,你的光有多亮。然而,为了使定位图像达到高分辨率,您必须找到大量荧光团的位置。不太明显的是,获得一定数量的荧光团所需的帧数取决于样品的结构,因为你不能对两个离得太近的荧光团成像。这意味着最大速度取决于样品的结构。我们将进行模拟,以计算出最大速度如何取决于结构,这将使细胞生物学家提前知道对于给定的样品可以达到什么样的速度。其次,我们将开发一种方法,可以检查实验的原始数据,并确定如果你分析它,你是否会得到反映样品结构的图像,或者如果你将得到一个图像的功能所造成的拟合荧光团的位置不准确。目前,很难确定是否发生了这种情况,特别是如果你试图快速获得数据,这是活细胞实验所必需的。可以通过观察检测到的荧光团的数量如何随时间变化来执行快速测试。然而,我们可能需要一个更复杂的测试。我们将使用来自实验的图像并创建一个模拟图像,其中我们在已知位置添加单个荧光团。然后我们可以运行数据分析,看看新的荧光团是否被正确检测到。通过移动荧光团,并在不同的帧上进行测试,我们将确定图像中是否有数据分析不好的特定时间或位置。通过采用这两种方法,我们将为每一位拥有定位显微镜系统的细胞生物学家提供他们所需的工具,以计算他们可以成像他们感兴趣的结构的最大速度。这将使活细胞定位显微镜走出专业实验室,进入细胞生物学家的视野。固定细胞定位显微镜已经向我们展示了细胞中许多新的和意想不到的结构;通过将这项技术扩展到活细胞中,我们将能够看到这些结构如何随着时间的推移而变化和进化。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Rényi divergence enables accurate and precise cluster analysis for localization microscopy.
- DOI:10.1093/bioinformatics/bty403
- 发表时间:2018-12-01
- 期刊:
- 影响因子:0
- 作者:Staszowska AD;Fox-Roberts P;Hirvonen LM;Peddie CJ;Collinson LM;Jones GE;Cox S
- 通讯作者:Cox S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susan Cox其他文献
Force-transducing molecular ensembles at growing microtubule tips control mitotic spindle size
生长中的微管尖端的力转导分子集合控制有丝分裂纺锤体大小
- DOI:
10.1038/s41467-024-54123-2 - 发表时间:
2024-11-14 - 期刊:
- 影响因子:15.700
- 作者:
Lee-Ya Chu;Daniel Stedman;Julian Gannon;Susan Cox;Georgii Pobegalov;Maxim I. Molodtsov - 通讯作者:
Maxim I. Molodtsov
Assessing the Knowledge of Fourth-Year Medical Students in Milestones Level 1
- DOI:
10.1007/s40670-016-0292-1 - 发表时间:
2016-07-02 - 期刊:
- 影响因子:1.800
- 作者:
David Marzano;Emily Kobernik;Susan Cox;John L. Dalrymple;Lorraine Dugoff;Maya Hammoud - 通讯作者:
Maya Hammoud
“Tis Better to Give Than to Receive?” Health-related Benefits of Delivering Peer Support in Type 2 Diabetes: An Explanatory Sequential Mixed-methods Study
- DOI:
10.1016/j.jcjd.2022.02.006 - 发表时间:
2022-07-01 - 期刊:
- 影响因子:
- 作者:
Rowshanak Afshar;Rawel Sidhu;Amir S. Askari;Diana Sherifali;Pat G. Camp;Susan Cox;Tricia S. Tang - 通讯作者:
Tricia S. Tang
Synergistic inhibition of human immunodeficiency virus replication in vitro by combinations of 3'-azido-3'-deoxythymidine and 3'-fluoro-3'-deoxythymidine.
3-叠氮基-3-脱氧胸苷和3-氟-3-脱氧胸苷的组合在体外协同抑制人类免疫缺陷病毒复制。
- DOI:
10.1089/aid.1990.6.1197 - 发表时间:
1990 - 期刊:
- 影响因子:1.5
- 作者:
Johan Harmenberg;A. Åkesson;L. Vrang;Susan Cox - 通讯作者:
Susan Cox
Recent high-magnetic-field experiments on the “High <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si79.gif" overflow="scroll" class="math"><msub><mrow><mi>T</mi></mrow><mrow><mi mathvariant="normal">c</mi></mrow></msub></math>” cuprates; Fermi-surface instabilities as a driver for superconductivity
- DOI:
10.1016/j.physb.2008.11.013 - 发表时间:
2009-03-01 - 期刊:
- 影响因子:
- 作者:
John Singleton;Ross D. McDonald;Susan Cox - 通讯作者:
Susan Cox
Susan Cox的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susan Cox', 18)}}的其他基金
Enabling Reliable Testing Of SMLM Datasets
实现 SMLM 数据集的可靠测试
- 批准号:
BB/X01858X/1 - 财政年份:2024
- 资助金额:
$ 17.09万 - 项目类别:
Research Grant
Mesoscale structural biology using deep learning
使用深度学习的介观结构生物学
- 批准号:
BB/T011823/1 - 财政年份:2021
- 资助金额:
$ 17.09万 - 项目类别:
Research Grant
A Bessel beam light sheet microscope
贝塞尔光束光片显微镜
- 批准号:
BB/S019065/1 - 财政年份:2019
- 资助金额:
$ 17.09万 - 项目类别:
Research Grant
Molecular relativity: tracking single molecule movement relative to cell structures
分子相对论:跟踪相对于细胞结构的单分子运动
- 批准号:
BB/R021767/1 - 财政年份:2018
- 资助金额:
$ 17.09万 - 项目类别:
Research Grant
Bayesian analysis of images to provide fluorescence ultramicroscopy
对图像进行贝叶斯分析以提供荧光超显微术
- 批准号:
BB/K01563X/1 - 财政年份:2013
- 资助金额:
$ 17.09万 - 项目类别:
Research Grant
相似海外基金
University of Louisville Biomedical Integrative Opportunity for Mentored Experience Development -PREP (UL-BIOMED-PREP)
路易斯维尔大学生物医学综合指导经验开发机会 -PREP (UL-BIOMED-PREP)
- 批准号:
10557638 - 财政年份:2023
- 资助金额:
$ 17.09万 - 项目类别:
Comparison of direct and indirect magnetic resonance imaging of myelin in Alzheimer's disease
阿尔茨海默病髓磷脂直接和间接磁共振成像的比较
- 批准号:
10680319 - 财政年份:2023
- 资助金额:
$ 17.09万 - 项目类别:
Acquisition of Zeiss LSM980 with Airyscan 2, a super-resolution point scanning confocal microscope
购买 Zeiss LSM980 和 Airyscan 2(超分辨率点扫描共焦显微镜)
- 批准号:
10632893 - 财政年份:2023
- 资助金额:
$ 17.09万 - 项目类别:
BRAIN CONNECTS: A Center for High-throughput Integrative Mouse Connectomics
大脑连接:高通量集成鼠标连接组学中心
- 批准号:
10665380 - 财政年份:2023
- 资助金额:
$ 17.09万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 17.09万 - 项目类别:
Multi-color laser particles for high-throughput pooled analysis
用于高通量混合分析的多色激光颗粒
- 批准号:
10713533 - 财政年份:2023
- 资助金额:
$ 17.09万 - 项目类别:
A fast CTOT for mapping whole brain hemodynamic activity in infants
用于绘制婴儿全脑血流动力学活动的快速 CTOT
- 批准号:
10591932 - 财政年份:2023
- 资助金额:
$ 17.09万 - 项目类别:
Parameterizing the relationship between motor cortical reactivation during sleep and motor skill acquisition in the freely behaving marmoset
参数化睡眠期间运动皮层重新激活与自由行为狨猴运动技能习得之间的关系
- 批准号:
10658109 - 财政年份:2023
- 资助金额:
$ 17.09万 - 项目类别:
Neural circuit mechanisms of drug-context associations in the hippocampus
海马区药物关联的神经回路机制
- 批准号:
10723049 - 财政年份:2023
- 资助金额:
$ 17.09万 - 项目类别: