Phylogeographic inference using genomic sequence data under the multispecies coalescent model
多物种合并模型下使用基因组序列数据进行系统发育地理学推断
基本信息
- 批准号:BB/P006493/1
- 负责人:
- 金额:$ 50.8万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our evolutionary history is written in our genomes. By comparing DNA sequences from different species or multiple individuals of the same species we can work out how the species are related, when they diverged from each other, whether there was introgression between the species, and whether the population size of a species went through a bottleneck or other demographic changes. DNA sequences can also be used to identify species and delineate species boundaries. To address such exciting questions, powerful statistical methods and computational algorithms are necessary. In this project we will develop new statistical models and computer algorithms for efficient analysis of genomic sequence data within two well-established statistical frameworks: maximum likelihood and Bayesian inference. We will develop a maximum likelihood method for estimating the species tree that accommodates the random process of biological reproduction and genetic sequence evolution, as well as introgression or hybridisation that may be common between closely related species, especially during radiative speciations. We will introduce significant improvements and extensions to our Bayesian model-comparison approach to delimiting species using genomic sequence data. We will implement sophisticated models to describe the evolutionary process of DNA sequences and to allow changes in the evolutionary rate among lineages so that the program can be applied to estimate species phylogenies for distantly related species, such as different orders of mammals. We will parallelize the program to improve the computational efficiency.
我们的进化史写在我们的基因组中。通过比较来自不同物种或同一物种的多个个体的DNA序列,我们可以算出该物种的相关性,当它们相互差异时,无论物种之间存在渗入,以及一个物种的种群大小是否经过瓶颈还是其他人口统计学变化。 DNA序列也可以用于识别物种和描述物种边界。为了解决此类令人兴奋的问题,必须使用强大的统计方法和计算算法。在此项目中,我们将开发新的统计模型和计算机算法,以有效地分析两个良好的统计框架内的基因组序列数据:最大似然和贝叶斯推断。我们将开发一种最大似然方法,用于估算适合生物繁殖和遗传序列进化的随机过程的物种树,以及在密切相关的物种之间,尤其是在辐射范围内可能是共有的,尤其是在辐射范围内,可能是共同的。我们将使用基因组序列数据对我们的贝叶斯模型比较方法进行重大改进和扩展,以划定物种。我们将实施复杂的模型来描述DNA序列的进化过程,并允许谱系之间的进化速率变化,以便该程序可以应用于远距离相关物种的物种系统发育,例如不同的哺乳动物。我们将平行于该程序以提高计算效率。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Bayesian implementation of the multispecies coalescent model with introgression for comparative genomic analysis
- DOI:10.1101/766741
- 发表时间:2019-09
- 期刊:
- 影响因子:0
- 作者:Thomas Flouris;Xiyun Jiao;B. Rannala;Ziheng Yang
- 通讯作者:Thomas Flouris;Xiyun Jiao;B. Rannala;Ziheng Yang
The asymptotic behavior of bootstrap support values in molecular phylogenetics.
- DOI:10.1093/sysbio/syaa100
- 发表时间:2020-12
- 期刊:
- 影响因子:6.5
- 作者:Jun Huang;Yuting Liu;Tianqi Zhu;Ziheng Yang
- 通讯作者:Jun Huang;Yuting Liu;Tianqi Zhu;Ziheng Yang
Bayesian Phylogenetic Inference using Relaxed-clocks and the Multispecies Coalescent.
- DOI:10.1093/molbev/msac161
- 发表时间:2022-08-03
- 期刊:
- 影响因子:10.7
- 作者:Flouri, Tomas;Huang, Jun;Jiao, Xiyun;Kapli, Paschalia;Rannala, Bruce;Yang, Ziheng
- 通讯作者:Yang, Ziheng
Multispecies coalescent and its applications to infer species phylogenies and cross-species gene flow.
- DOI:10.1093/nsr/nwab127
- 发表时间:2021-12
- 期刊:
- 影响因子:20.6
- 作者:Jiao X;Flouri T;Yang Z
- 通讯作者:Yang Z
The Impact of Cross-Species Gene Flow on Species Tree Estimation
- DOI:10.1101/820019
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:Xiyun Jiao;Thomas Flouris;B. Rannala;Ziheng Yang
- 通讯作者:Xiyun Jiao;Thomas Flouris;B. Rannala;Ziheng Yang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ziheng Yang其他文献
A space-time process model for the evolution of DNA sequences.
- DOI:
10.1093/genetics/139.2.993 - 发表时间:
1995-02 - 期刊:
- 影响因子:3.3
- 作者:
Ziheng Yang - 通讯作者:
Ziheng Yang
Maximum-likelihood models for combined analyses of multiple sequence data
- DOI:
10.1007/bf02352289 - 发表时间:
1996-05 - 期刊:
- 影响因子:3.9
- 作者:
Ziheng Yang - 通讯作者:
Ziheng Yang
Correction: The Trouble with Sliding Windows and the Selective Pressure in BRCA1
修正:BRCA1 中滑动窗口和选择压力的问题
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:3.7
- 作者:
Karl Schmid;Ziheng Yang - 通讯作者:
Ziheng Yang
A heuristic rate smoothing procedure for maximum likelihood estimation of species divergence times
物种分化时间最大似然估计的启发式速率平滑程序
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Ziheng Yang - 通讯作者:
Ziheng Yang
Ziheng Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ziheng Yang', 18)}}的其他基金
Efficient computational technologies to resolve the Timetree of Life: from ancient DNA to species-rich phylogenies
高效计算技术解析生命时间树:从古代 DNA 到物种丰富的系统发育
- 批准号:
BB/Y004132/1 - 财政年份:2024
- 资助金额:
$ 50.8万 - 项目类别:
Research Grant
PAML 5: A friendly and powerful bioinformatics resource for phylogenomics
PAML 5:用于系统基因组学的友好且强大的生物信息学资源
- 批准号:
BB/X018571/1 - 财政年份:2024
- 资助金额:
$ 50.8万 - 项目类别:
Research Grant
NSFDEB-NERC: Integrating computational, phenotypic, and population-genomic approaches to reveal processes of cryptic speciation and gene flow in Madag
NSFDEB-NERC:整合计算、表型和群体基因组方法来揭示马达格神秘物种形成和基因流的过程
- 批准号:
NE/X002071/1 - 财政年份:2023
- 资助金额:
$ 50.8万 - 项目类别:
Research Grant
Bayesian inference of the mode of speciation and gene flow using genomic data
使用基因组数据对物种形成和基因流模式进行贝叶斯推断
- 批准号:
BB/X007553/1 - 财政年份:2023
- 资助金额:
$ 50.8万 - 项目类别:
Research Grant
Bayesian implementation of the multispecies-coalescent-with-introgression (MSci) model for analysis of population genomic data
用于群体基因组数据分析的多物种合并渗入 (MSci) 模型的贝叶斯实施
- 批准号:
BB/T003502/1 - 财政年份:2020
- 资助金额:
$ 50.8万 - 项目类别:
Research Grant
Efficient Bayesian phylogenomic dating with new models of trait evolution and rich diversities of living and fossil species
利用性状进化的新模型以及活体和化石物种的丰富多样性进行有效的贝叶斯系统发育测定
- 批准号:
BB/T012951/1 - 财政年份:2020
- 资助金额:
$ 50.8万 - 项目类别:
Research Grant
Improving Bayesian methods for estimating divergence times integrating genomic and trait data
改进贝叶斯方法来估计整合基因组和性状数据的分歧时间
- 批准号:
BB/N000609/1 - 财政年份:2016
- 资助金额:
$ 50.8万 - 项目类别:
Research Grant
Statistical Methods for Genomic Analysis of Species Divergences
物种差异基因组分析的统计方法
- 批准号:
BB/K000896/1 - 财政年份:2013
- 资助金额:
$ 50.8万 - 项目类别:
Research Grant
Bayesian Estimation of Species Divergence Times Integrating Fossil and Molecular Information
整合化石和分子信息的物种分化时间的贝叶斯估计
- 批准号:
BB/J009709/1 - 财政年份:2012
- 资助金额:
$ 50.8万 - 项目类别:
Research Grant
Representation and Incorporation of Fossil Data in Molecular Dating of Species Divergences
化石数据在物种分歧分子测年中的表示和结合
- 批准号:
BB/G006431/1 - 财政年份:2009
- 资助金额:
$ 50.8万 - 项目类别:
Research Grant
相似国自然基金
基于因果推理的人机物融合系统需求建模与验证研究
- 批准号:62362006
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于行为因果推理的跨网络用户对齐技术研究
- 批准号:62302303
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
精细化事件知识表示、获取与推理
- 批准号:62306299
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向大规模异构边缘网络的智能低碳协同推理机制研究
- 批准号:62301335
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
多重知识驱动的少样本视频时序规划及推理关键技术研究
- 批准号:62372403
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 50.8万 - 项目类别:
Standard Grant
Causal inference of oral and general health using multiple large cohorts, NDB, and hospital data
使用多个大型队列、NDB 和医院数据对口腔和一般健康状况进行因果推断
- 批准号:
23H03117 - 财政年份:2023
- 资助金额:
$ 50.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
MPhil/PhD Statistics (Assessing inequality in the Criminal Justice System using novel causal inference methods and Bayesian spatial models)
硕士/博士统计学(使用新颖的因果推理方法和贝叶斯空间模型评估刑事司法系统中的不平等)
- 批准号:
2905812 - 财政年份:2023
- 资助金额:
$ 50.8万 - 项目类别:
Studentship
Who is most affected by bullying in academic performance? An empirical study using causal inference and machine learning
谁在学业成绩上受到欺凌的影响最大?
- 批准号:
23K01372 - 财政年份:2023
- 资助金额:
$ 50.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Innovative prediction method for for chemical-induced developmental toxicity using causal inference through machine learning.
通过机器学习进行因果推理来预测化学品引起的发育毒性的创新方法。
- 批准号:
23H03555 - 财政年份:2023
- 资助金额:
$ 50.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)