Bayesian Inference of Whole-Brain Directed Networks Using Neuroimaging Data

使用神经影像数据进行全脑定向网络的贝叶斯推理

基本信息

  • 批准号:
    2242568
  • 负责人:
  • 金额:
    $ 27.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

This research project will develop new statistical models and computationally efficient algorithms to analyze functional magnetic resonance imaging (fMRI) data. The advent of fMRI offers unprecedented opportunities for scientists to study the functional organization of the human brain because fMRI provides non-invasive measurements of the entire human brain's activity with a high spatial resolution. However, the massive size and large noise of fMRI data and the complex functional organizations of human brains pose challenges to scientists. This project will develop efficient fMRI data analysis methods to address these challenges. The new methods will be applied to investigate human brains' functional organizations, functional organization changes during brain development, and the relationship between the human brain and behavior in the population. The project results will contribute to the critical knowledge of the development of both healthy brain functions and risks for mental health challenges. Open-source software that implements the new statistical tools will be developed and made publicly available. The project will provide educational and training opportunities for undergraduate and graduate students.This project will build Bayesian models for whole-brain networks of many subjects based on their fMRI data. The new models will specifically characterize functionally specialized modules of brain regions and connections within and between the modules in whole-brain networks. In addition, the new models offer model flexibility, improved estimation efficiency, and robustness to model error and data noise in characterizing many subjects' whole-brain networks. Efficient computational algorithms will be developed to address the computational challenge in analyzing massive fMRI data and to map many subjects' whole-brain networks simultaneously. The project also will propose scalar-on-network regressions that feature heterogeneous relationships between behavior and brain networks in the population. The investigator will apply the new methods to neuroimaging and behavioral data of many subjects and examine the variation and distribution of the human brain's functional organization and its relationship to human behavior in the population. The project's findings will enhance understanding of the brain, human behavior, the risk for mental health challenges, and the role of the brain in overall health and well-being.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目将开发新的统计模型和计算效率高的算法来分析功能性磁共振成像(fMRI)数据。功能磁共振成像的出现为科学家研究人脑的功能组织提供了前所未有的机会,因为功能磁共振成像提供了高空间分辨率的整个人脑活动的非侵入性测量。然而,fMRI数据的海量和大噪声以及人脑复杂的功能组织给科学家带来了挑战。该项目将开发有效的fMRI数据分析方法来应对这些挑战。新方法将用于研究人脑的功能组织,大脑发育过程中功能组织的变化,以及人脑与人群行为之间的关系。该项目的结果将有助于发展健康的大脑功能和心理健康挑战的风险的关键知识。将开发并公开提供实施新统计工具的开放源码软件。该项目将为本科生和研究生提供教育和培训的机会。该项目将根据他们的fMRI数据为许多受试者建立全脑网络的贝叶斯模型。新模型将具体描述大脑区域的功能专门模块以及全脑网络中模块内部和模块之间的连接。此外,新模型提供了模型灵活性,提高了估计效率,并在表征许多受试者的全脑网络时对模型误差和数据噪声具有鲁棒性。高效的计算算法将被开发出来,以解决在分析大量的功能磁共振成像数据和映射许多受试者的全脑网络同时计算的挑战。该项目还将提出网络上的标量回归,其特征在于人口中行为和大脑网络之间的异质关系。研究人员将把新方法应用于许多受试者的神经成像和行为数据,并研究人类大脑功能组织的变化和分布及其与人类行为的关系。该项目的发现将提高对大脑、人类行为、精神健康挑战的风险以及大脑在整体健康和福祉中的作用的理解。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tingting Zhang其他文献

Water footprint modeling and forecasting of cassava based on different artificial intelligence algorithms in Guangxi, China
基于不同人工智能算法的广西木薯水足迹建模与预测
  • DOI:
    10.1016/j.jclepro.2022.135238
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Mingfeng Tao;Tingting Zhang;Xiaomin Xie;Xiaojing Liang
  • 通讯作者:
    Xiaojing Liang
PREED: Packet REcovery by Exploiting the Determinism in Industrial WSN Communication
PREED:利用工业 WSN 通信中的确定性进行数据包恢复
A human behavior model of multi-agent attention based on actor–observer switching for asynchronous motion tasks with limited field of view
基于演员-观察者切换的多智能体注意人类行为模型,适用于有限视野的异步运动任务
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tingting Zhang;K. Kühnlenz
  • 通讯作者:
    K. Kühnlenz
2.3: Invited Paper: Stereoacuity measurement and the related factors
2.3:特邀论文:立体视觉测量及相关因素
Three-component synthesis of amidoalkyl naphthols catalyzed by bismuth(III) nitrate pentahydrate
五水硝酸铋催化酰胺基烷基萘酚的三组分合成
  • DOI:
    10.1016/j.cclet.2011.10.008
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Min Wang;Yan Liang;Tingting Zhang;J. Gao
  • 通讯作者:
    J. Gao

Tingting Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tingting Zhang', 18)}}的其他基金

Spatial Temporal Analysis of Multi-Subject Neuroimaging Data for Human Emotion Studies
用于人类情感研究的多主体神经影像数据的时空分析
  • 批准号:
    2048991
  • 财政年份:
    2020
  • 资助金额:
    $ 27.51万
  • 项目类别:
    Standard Grant
Spatial Temporal Analysis of Multi-Subject Neuroimaging Data for Human Emotion Studies
用于人类情感研究的多主体神经影像数据的时空分析
  • 批准号:
    1758095
  • 财政年份:
    2018
  • 资助金额:
    $ 27.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Statistical Modeling and Inference for High-dimensional Multi-Subject Neuroimaging Data
合作研究:高维多主体神经影像数据的统计建模和推理
  • 批准号:
    1209118
  • 财政年份:
    2012
  • 资助金额:
    $ 27.51万
  • 项目类别:
    Standard Grant
ATD Collaborative Research: Statistical Modeling of Short-Read Counts in RNA-Seq
ATD 合作研究:RNA-Seq 中短读计数的统计建模
  • 批准号:
    1120756
  • 财政年份:
    2011
  • 资助金额:
    $ 27.51万
  • 项目类别:
    Continuing Grant

相似海外基金

Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
  • 批准号:
    EP/Y002113/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.51万
  • 项目类别:
    Research Grant
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
  • 批准号:
    2336840
  • 财政年份:
    2024
  • 资助金额:
    $ 27.51万
  • 项目类别:
    Continuing Grant
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
  • 批准号:
    EP/Y000862/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.51万
  • 项目类别:
    Research Grant
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
  • 批准号:
    2339829
  • 财政年份:
    2024
  • 资助金额:
    $ 27.51万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 27.51万
  • 项目类别:
    Standard Grant
CAREER: Efficient Large Language Model Inference Through Codesign: Adaptable Software Partitioning and FPGA-based Distributed Hardware
职业:通过协同设计进行高效的大型语言模型推理:适应性软件分区和基于 FPGA 的分布式硬件
  • 批准号:
    2339084
  • 财政年份:
    2024
  • 资助金额:
    $ 27.51万
  • 项目类别:
    Continuing Grant
AI4PhotMod - Artificial Intelligence for parameter inference in Photosynthesis Models
AI4PhotMod - 用于光合作用模型中参数推断的人工智能
  • 批准号:
    BB/Y51388X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.51万
  • 项目类别:
    Research Grant
CSR: Small: Latency-controlled Reduction of Data Center Expenses for Handling Bursty ML Inference Requests
CSR:小:通过延迟控制减少数据中心处理突发 ML 推理请求的费用
  • 批准号:
    2336886
  • 财政年份:
    2024
  • 资助金额:
    $ 27.51万
  • 项目类别:
    Standard Grant
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
  • 批准号:
    2338760
  • 财政年份:
    2024
  • 资助金额:
    $ 27.51万
  • 项目类别:
    Continuing Grant
STATISTICAL AND COMPUTATIONAL THRESHOLDS IN SPIN GLASSES AND GRAPH INFERENCE PROBLEMS
自旋玻璃和图推理问题的统计和计算阈值
  • 批准号:
    2347177
  • 财政年份:
    2024
  • 资助金额:
    $ 27.51万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了