Peripheral clocks in Drosophila
果蝇的外围时钟
基本信息
- 批准号:BB/P010121/1
- 负责人:
- 金额:$ 48.16万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For several decades, biorhythm researchers in the two main animal model system, the fruitfly and the mouse have believed that behavioural rhythms are determined exclusively by central brain clock neurons. These neurons act as pacemakers and can generate the 24 hour locomotor cycles that are so important for allowing the animal to interact with its environment at the optimum time of day. In the fly, the pacemaker cells are called the sLNvs and in the mouse, the SCN. In the fly, the peripheral nervous system and non-neural organs have independent clocks, whereas in the mammal, the SCN synchronises the rhythms in the periphery via a number of signalling factors. Recently we have observed that clocks in the antennae or the eyes, which lie outside the central brain of the fruitfly, can nevertheless generate behavioural rhythms even though the central clock neurons are made genetically arrhythmic. This means there are pacemaker cells in these two peripheral tissues that can mediate rhythmic behaviour, so it is not all about the sLNvs. However, the clock cells in the antennae need the central brain network to be intact, even though it is clockless, in order for these behavioural rhythms to be expressed. These results will come as something of a shock to fly clock researchers as it overturns current dogma.We shall carefully examine the antennae and identify the clock cells that act as behavioural pacemakers. We know that these cells are involved in temperature, wind and gravity sensing as well as hearing, but is it particular subsets of these or is it all of them ? The antennae as also full of smell receptors, so we shall ask whether these too can act as pacemaker cells. We shall manipulate these cells genetically in a number of ways, for example by stopping their clocks, hyperexciting these cells, or speeding them up or slowing them down to see what happens to the rhythmic behaviour. We will also examine how 'normal' these rhythms are, do they respond to light and temperature in the usual ways that clocks do, or are they abnormal? We shall also find out how the antennal pacemaker cells might connect to the central brain circuit that is required for rhythms to be expressed. We will extend our studies to the eye in a similar way and finally we shall ask whether non-neural tissue, the fly's liver called the fat body, can also drive behavioural rhythms. While this might seem unlikely, given the surprising results that we have already obtained, we take nothing for granted.
几十年来,果蝇和小鼠这两种主要动物模型系统的生物节律研究人员一直认为,行为节律完全是由中央大脑时钟神经元决定的。这些神经元充当起搏器,可以产生24小时的运动周期,这对于让动物在一天中的最佳时间与环境互动非常重要。在果蝇中,起搏细胞被称为sLNvs,在小鼠中,称为SCN。在果蝇中,外周神经系统和非神经器官具有独立的时钟,而在哺乳动物中,SCN通过许多信号因素同步外周的节律。最近,我们观察到,位于果蝇中枢大脑之外的触角或眼睛中的时钟仍然可以产生行为节奏,尽管中枢时钟神经元在遗传上是不稳定的。这意味着在这两个外周组织中存在起搏细胞,可以介导节律行为,因此这并不完全是关于sLNvs的。然而,为了表达这些行为节奏,触角中的时钟细胞需要中枢脑网络保持完整,即使它是无时钟的。这些研究结果将推翻目前的教条,让研究飞行生物钟的科学家们感到震惊。我们将仔细检查触角,并确定充当行为起搏器的生物钟细胞。我们知道这些细胞与温度、风和重力感知以及听觉有关,但它是这些细胞的特定子集还是所有细胞?触角也充满了嗅觉感受器,所以我们要问,这些感受器是否也可以作为起搏细胞。我们将以多种方式从基因上操纵这些细胞,例如通过停止它们的生物钟,使这些细胞过度兴奋,或者使它们加速或减速,以观察节奏行为发生了什么变化。我们还将研究这些节律有多“正常”,它们是像时钟一样对光线和温度做出反应,还是不正常?我们还将发现触角起搏细胞如何连接到表达节律所需的中枢脑回路。我们将以类似的方式将我们的研究扩展到眼睛,最后我们将询问非神经组织,即称为脂肪体的苍蝇肝脏,是否也可以驱动行为节奏。虽然这似乎不太可能,但鉴于我们已经获得的令人惊讶的结果,我们认为没有什么是理所当然的。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Aminergic Signaling Controls Ovarian Dormancy in Drosophila.
- DOI:10.1038/s41598-018-20407-z
- 发表时间:2018-02-01
- 期刊:
- 影响因子:4.6
- 作者:Andreatta G;Kyriacou CP;Flatt T;Costa R
- 通讯作者:Costa R
Staring at the Clock Face in Drosophila.
盯着果蝇的钟面。
- DOI:10.1016/j.neuron.2017.06.005
- 发表时间:2017
- 期刊:
- 影响因子:16.2
- 作者:Rosato E
- 通讯作者:Rosato E
Visualization of Mutant Aggregates from Clock Neurons by Agarose Gel Electrophoresis (AGERA) in Drosophila melanogaster.
- DOI:10.1007/978-1-0716-2249-0_25
- 发表时间:2022-01-01
- 期刊:
- 影响因子:0
- 作者:Delfino, Laura;Campesan, Susanna;Rosato, Ezio
- 通讯作者:Rosato, Ezio
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charalambos Kyriacou其他文献
Charalambos Kyriacou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charalambos Kyriacou', 18)}}的其他基金
BioClocks UK: Supporting The Biological Rhythm Research Community To Deliver Impact
BioClocks UK:支持生物节律研究界以产生影响
- 批准号:
BB/Y006194/1 - 财政年份:2024
- 资助金额:
$ 48.16万 - 项目类别:
Research Grant
Cryptochrome and magnetosensitivity in Drosophila
果蝇的隐花色素和磁敏感性
- 批准号:
BB/V006304/1 - 财政年份:2022
- 资助金额:
$ 48.16万 - 项目类别:
Research Grant
A novel approach to identifying aggression genes in Drosophila
识别果蝇攻击基因的新方法
- 批准号:
BB/L023520/1 - 财政年份:2014
- 资助金额:
$ 48.16万 - 项目类别:
Research Grant
Functional and genomic studies of tidal rhythmicity
潮汐节律的功能和基因组研究
- 批准号:
BB/K009702/1 - 财政年份:2013
- 资助金额:
$ 48.16万 - 项目类别:
Research Grant
Invited resubmission: the Drosophila circadian clock under simulated natural conditions
受邀重新提交:模拟自然条件下的果蝇生物钟
- 批准号:
BB/J005169/1 - 财政年份:2012
- 资助金额:
$ 48.16万 - 项目类别:
Research Grant
Timeless and diapause in Drosophila
果蝇的永恒和滞育
- 批准号:
BB/F014082/1 - 财政年份:2008
- 资助金额:
$ 48.16万 - 项目类别:
Research Grant
Molecular genetics of biological rhythms in an intertidal crustacean
潮间带甲壳动物生物节律的分子遗传学
- 批准号:
BB/E000835/1 - 财政年份:2006
- 资助金额:
$ 48.16万 - 项目类别:
Research Grant
相似海外基金
Molecular and cellular mechanisms underlying circadian rhythms and sleep in Drosophila
果蝇昼夜节律和睡眠的分子和细胞机制
- 批准号:
10405908 - 财政年份:2022
- 资助金额:
$ 48.16万 - 项目类别:
Molecular and cellular mechanisms underlying circadian rhythms and sleep in Drosophila
果蝇昼夜节律和睡眠的分子和细胞机制
- 批准号:
10796266 - 财政年份:2022
- 资助金额:
$ 48.16万 - 项目类别:
Using Drosophila eclosion to genetically dissect how central and peripheral clocks and the endocrine system interact to time behaviour
利用果蝇羽化从基因角度剖析中枢和外周时钟以及内分泌系统如何与时间行为相互作用
- 批准号:
398112454 - 财政年份:2018
- 资助金额:
$ 48.16万 - 项目类别:
Research Grants
Role of Circadian Clocks in Aging using Drosophila
利用果蝇研究生物钟在衰老中的作用
- 批准号:
8709964 - 财政年份:2013
- 资助金额:
$ 48.16万 - 项目类别:
Role of Circadian Clocks in Aging using Drosophila
利用果蝇研究生物钟在衰老中的作用
- 批准号:
9522362 - 财政年份:2013
- 资助金额:
$ 48.16万 - 项目类别:
Role of Circadian Clocks in Aging using Drosophila
利用果蝇研究生物钟在衰老中的作用
- 批准号:
9298543 - 财政年份:2013
- 资助金额:
$ 48.16万 - 项目类别:
Aging of tissue-specific clocks in the immune system of Drosophila
果蝇免疫系统中组织特异性时钟的老化
- 批准号:
8580280 - 财政年份:2013
- 资助金额:
$ 48.16万 - 项目类别:
Role of Circadian Clocks in Aging using Drosophila
利用果蝇研究生物钟在衰老中的作用
- 批准号:
8880089 - 财政年份:2013
- 资助金额:
$ 48.16万 - 项目类别:
Role of Circadian Clocks in Aging using Drosophila
利用果蝇研究生物钟在衰老中的作用
- 批准号:
8580334 - 财政年份:2013
- 资助金额:
$ 48.16万 - 项目类别:
Aging of tissue-specific clocks in the immune system of Drosophila
果蝇免疫系统中组织特异性时钟的老化
- 批准号:
8720663 - 财政年份:2013
- 资助金额:
$ 48.16万 - 项目类别: