Molecular genetics of biological rhythms in an intertidal crustacean

潮间带甲壳动物生物节律的分子遗传学

基本信息

  • 批准号:
    BB/E000835/1
  • 负责人:
  • 金额:
    $ 51.84万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

Circadian rhythms are 24 h cycles of behaviour and physiology that evolved in response to three billion years of relentless cycles of day and night. Remarkably, the same genes that run the circadian clock in the fruitfly, such as period, Clock, doubletime, also encode the clock in mammals. However, the most important environmental rhythms for animals that inhabit the seashore are not those of day and night, but those of high and low tide that ebb and flow every 12.4 h. Animals that inhabit this intertidal zone adjust their behaviour to the mechanical agitation of the incoming and outgoing tide. At low tide, they hide from predators by burrowing into the sand, and at high tide, crabs, for example, swim and forage for food. Terrestrial animals evolved from marine organisms so tidal rhythms may even have predated the circadian 24 h cycle. Nothing is known about the molecular basis for tidal rhythms. One idea is that the same genes that determine circadian rhythmicity may also be involved in tidal cycles. As many of the circadian clock gene products (mRNAs and proteins) cycle in the animals' brains with a 24 h period, we might expect that if the same genes controlled tidal cycles, their mRNA should also show 12.4 h cycles of expression in the part of the brain which controls tidal rhythmicity. Alternatively, a completely different set of genes might be determining tidal cycles, but we would nevertheless expect some of these to have12.4 h cycles of expression at the level of their mRNA. With this in mind, we have studied the molecular basis of the intertidal crustacean, Eurydice pulchra (the 'sea louse'). Eurydice shows very robust circadian and tidal cycles of behaviour. We have already identified almost all of Eurydice's circadian clock genes that would be expected to play the major role in generating 24 h cycles, and indeed we find rhythmic expression in some specific Eurydice neurons that express the PER protein. Under conditions in which we know that tidal cycles of behaviour are expressed, we find that two other neurons begin to express PER. It could be that the two groups of PER expressing neurons are both rhythmic with 24 h periods, but interact to give the ~12 hour tidal cycle. In order to see which genes cycle with 12.4 h mRNA rhythms, without any prior guesswork as to their identity, we have developed a Eurydice microarray, a glass slide on which the sequences corresponding to many thousands of Eurydice genes, have been spotted. By interrogating this microarray with mRNA collected from Eurydice brains at different times, which will hybridise to their corresponding DNA sequences on the microarray, we have obtained about 80 candidate tidal genes that show ~12 h cycles of expression. This grant proposal seeks to use those parts of tidal genes (promoters), that are responsible for their cycling and isolate the proteins that control this cycling. These proteins will then have their own genes and promoters analysed, and in this way we will work backwards into the tidal clock. We shall also use the canonical circadian clock genes from Eurydice that we have identified and use antibodies which label their proteins, to see whether groups of clock gene expressing neurons might form a network from which a ~12 h tidal rhythm could emerge. We shall also attempt to knock out these clock genes in individual Eurydice, and if this disrupts their tidal behaviour, it will mean that the tidal clock is probably generated by circadian oscillations. Finally we shall challenge the microarray with RNA taken from animals that have been acutely exposed to the major environmental stimuli that entrain circadian and tidal behaviour, namely light and vibration. This should allow us to identify light and vibration responsive genes. The vibration responsive genes would be particularly useful in helping us find the anatomical input pathways into the tidal clock.
昼夜节律是24小时的行为和生理周期,是对30亿年来昼夜无情循环的反应。值得注意的是,在果蝇中运行生物钟的基因,如period,Clock,doubletime,也编码了哺乳动物的生物钟。然而,对于栖息在海边的动物来说,最重要的环境节律不是白天和黑夜,而是每12.4小时一次的涨潮和退潮。栖息在这一潮间带的动物会根据潮汐的机械搅动来调整自己的行为。在退潮时,它们会钻到沙子里躲避捕食者,而在涨潮时,螃蟹会游泳觅食。陆地动物是从海洋生物进化而来的,所以潮汐节律甚至可能早于昼夜节律的24小时周期。我们对潮汐节律的分子基础一无所知。一种观点认为,决定昼夜节律的基因也可能与潮汐周期有关。由于许多生物钟基因产物(mRNA和蛋白质)在动物的大脑中以24小时为周期循环,我们可以预期,如果相同的基因控制潮汐周期,那么它们的mRNA在控制潮汐节律的大脑部分中也应该显示12.4小时的表达周期。或者,一组完全不同的基因可能决定潮汐周期,但我们仍然期望其中一些基因在mRNA水平上有12.4小时的表达周期。考虑到这一点,我们已经研究了潮间带甲壳动物,Eurydice pulchra(“海虱”)的分子基础。欧律狄刻显示出非常强大的昼夜节律和潮汐周期的行为。我们已经确定了几乎所有的Eurydice的生物钟基因,预计将发挥主要作用,产生24小时的周期,事实上,我们发现节奏表达在一些特定的Eurydice神经元表达PER蛋白。在我们知道行为的潮汐周期被表达的条件下,我们发现另外两个神经元开始表达PER。这可能是因为两组PER表达神经元都具有24小时的节律性,但相互作用产生约12小时的潮汐周期。为了了解哪些基因以12.4小时的mRNA节律循环,而不需要事先猜测它们的身份,我们开发了一种欧律狄刻微阵列,在一张载玻片上,对应于数千个欧律狄刻基因的序列已经被发现。通过用在不同时间从Eurydice脑中收集的mRNA询问该微阵列,其将与微阵列上相应的DNA序列杂交,我们已经获得了约80个显示~12 h表达周期的候选潮汐基因。这项拨款提案旨在利用潮汐基因(启动子)的那些部分,负责它们的循环并分离控制这种循环的蛋白质。然后,这些蛋白质将有自己的基因和启动子分析,通过这种方式,我们将回到潮汐时钟。我们还将使用我们已经鉴定的来自欧律狄刻的典型昼夜节律基因,并使用标记其蛋白质的抗体,来观察表达时钟基因的神经元组是否可能形成一个网络,从该网络中可以出现~12 h的潮汐节律。我们还将尝试敲除个别欧律狄刻中的这些时钟基因,如果这破坏了它们的潮汐行为,这将意味着潮汐时钟可能是由昼夜节律振荡产生的。最后,我们将挑战的微阵列与RNA采取的动物,已急性暴露于主要的环境刺激,夹带昼夜节律和潮汐行为,即光和振动。这将使我们能够识别光和振动响应基因。振动响应基因将特别有助于我们找到进入潮汐钟的解剖学输入途径。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Marine biorhythms: bridging chronobiology and ecology.
A novel form of pigment-dispersing hormone in the central nervous system of the intertidal marine isopod, Eurydice pulchra (leach).
潮间带海洋等足类动物 Eurydice pulchra(leach)中枢神经系统中一种新型色素分散激素。
Dissociation of circadian and circatidal timekeeping in the marine crustacean Eurydice pulchra.
  • DOI:
    10.1016/j.cub.2013.08.038
  • 发表时间:
    2013-10-07
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Zhang, Lin;Hastings, Michael H.;Green, Edward W.;Tauber, Eran;Sladek, Martin;Webster, Simon G.;Kyriacou, Charalambos P.;Wilcockson, David C.
  • 通讯作者:
    Wilcockson, David C.
The circadian clock gene bmal1 is necessary for co-ordinated circatidal rhythms in the marine isopod Eurydice pulchra (Leach).
  • DOI:
    10.1371/journal.pgen.1011011
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
Methods for Delivery of dsRNAi Against Canonical Clock Genes and Immunocytodetection of Clock Proteins in Crustacea.
针对甲壳动物中经典时钟基因的 dsRNAi 传递和时钟蛋白的免疫细胞检测的方法。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charalambos Kyriacou其他文献

Charalambos Kyriacou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charalambos Kyriacou', 18)}}的其他基金

BioClocks UK: Supporting The Biological Rhythm Research Community To Deliver Impact
BioClocks UK:支持生物节律研究界以产生影响
  • 批准号:
    BB/Y006194/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.84万
  • 项目类别:
    Research Grant
Cryptochrome and magnetosensitivity in Drosophila
果蝇的隐花色素和磁敏感性
  • 批准号:
    BB/V006304/1
  • 财政年份:
    2022
  • 资助金额:
    $ 51.84万
  • 项目类别:
    Research Grant
A tidal clock
潮汐钟
  • 批准号:
    BB/R01776X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 51.84万
  • 项目类别:
    Research Grant
Peripheral clocks in Drosophila
果蝇的外围时钟
  • 批准号:
    BB/P010121/1
  • 财政年份:
    2017
  • 资助金额:
    $ 51.84万
  • 项目类别:
    Research Grant
A novel approach to identifying aggression genes in Drosophila
识别果蝇攻击基因的新方法
  • 批准号:
    BB/L023520/1
  • 财政年份:
    2014
  • 资助金额:
    $ 51.84万
  • 项目类别:
    Research Grant
Functional and genomic studies of tidal rhythmicity
潮汐节律的功能和基因组研究
  • 批准号:
    BB/K009702/1
  • 财政年份:
    2013
  • 资助金额:
    $ 51.84万
  • 项目类别:
    Research Grant
Invited resubmission: the Drosophila circadian clock under simulated natural conditions
受邀重新提交:模拟自然条件下的果蝇生物钟
  • 批准号:
    BB/J005169/1
  • 财政年份:
    2012
  • 资助金额:
    $ 51.84万
  • 项目类别:
    Research Grant
Timeless and diapause in Drosophila
果蝇的永恒和滞育
  • 批准号:
    BB/F014082/1
  • 财政年份:
    2008
  • 资助金额:
    $ 51.84万
  • 项目类别:
    Research Grant

相似国自然基金

Journal of Genetics and Genomics
  • 批准号:
    31224803
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
双相情感障碍的基因多态性的关联研究
  • 批准号:
    81101008
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
调控TLRs信号通路候选miRNAs靶基因3'UTR内SNPs对口腔鳞状细胞癌发病的影响及其后续功能分析
  • 批准号:
    81001208
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
精神分裂症脑网络异常的影像遗传学研究
  • 批准号:
    81000582
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
精神分裂症与吸烟关联的分子遗传学机制研究
  • 批准号:
    81000579
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
中国竹叶青蛇属Viridovipera的分子系统与形态进化
  • 批准号:
    30970334
  • 批准年份:
    2009
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
FcγR基因拷贝数和狼疮性肾炎相关研究
  • 批准号:
    30801022
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
智力超常儿童的基因分型的初步研究
  • 批准号:
    30670716
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
鸡脂肪组织生长发育的分子遗传学基础
  • 批准号:
    30430510
  • 批准年份:
    2004
  • 资助金额:
    130.0 万元
  • 项目类别:
    重点项目

相似海外基金

Cell cycle timing and molecular mechanisms of structural variant formation following incomplete replication
不完全复制后结构变异形成的细胞周期时间和分子机制
  • 批准号:
    10656861
  • 财政年份:
    2023
  • 资助金额:
    $ 51.84万
  • 项目类别:
Molecular Mechanisms of TRIB1 Regulation of Hepatic Metabolism
TRIB1调节肝脏代谢的分子机制
  • 批准号:
    10660520
  • 财政年份:
    2023
  • 资助金额:
    $ 51.84万
  • 项目类别:
Molecular Mechanisms that Control mRNA Decapping in Biological Condensates
控制生物浓缩物中 mRNA 脱帽的分子机制
  • 批准号:
    10577994
  • 财政年份:
    2023
  • 资助金额:
    $ 51.84万
  • 项目类别:
Molecular characterization of expiratory breathing-related interneurons in mammals
哺乳动物呼气呼吸相关中间神经元的分子特征
  • 批准号:
    10726221
  • 财政年份:
    2023
  • 资助金额:
    $ 51.84万
  • 项目类别:
Circuit Specializations of Cerebellar Molecular Layer Interneurons
小脑分子层中间神经元的电路特化
  • 批准号:
    10722374
  • 财政年份:
    2023
  • 资助金额:
    $ 51.84万
  • 项目类别:
Cell-type specific molecular and functional analyses to target dorsal horn pain circuitry in mice and non-human primates
针对小鼠和非人类灵长类动物背角疼痛回路的细胞类型特异性分子和功能分析
  • 批准号:
    10863324
  • 财政年份:
    2023
  • 资助金额:
    $ 51.84万
  • 项目类别:
Molecular origins and evolution to chemoresistance in germ cell tumors
生殖细胞肿瘤中化学耐药性的分子起源和进化
  • 批准号:
    10443070
  • 财政年份:
    2023
  • 资助金额:
    $ 51.84万
  • 项目类别:
Characterizing the connectivity and molecular composition of opioid-sensitive neurons in the periaqueductal gray
导水管周围灰质阿片敏感神经元的连接和分子组成特征
  • 批准号:
    10605415
  • 财政年份:
    2023
  • 资助金额:
    $ 51.84万
  • 项目类别:
Biology and Molecular Biology of the Evolution of Macrophage-Tropic HIV-1
巨噬细胞趋向性 HIV-1 进化的生物学和分子生物学
  • 批准号:
    10882245
  • 财政年份:
    2023
  • 资助金额:
    $ 51.84万
  • 项目类别:
Molecular mechanisms of inherent drug resistance in non-tuberculous mycobacteria
非结核分枝杆菌固有耐药性的分子机制
  • 批准号:
    10771645
  • 财政年份:
    2023
  • 资助金额:
    $ 51.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了