The role of acylation in cellulose synthesis

酰化在纤维素合成中的作用

基本信息

  • 批准号:
    BB/P01013X/1
  • 负责人:
  • 金额:
    $ 58.2万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Cellulose is the major component of many plant cells walls and is considered to be the world's most abundant naturally occurring polymer. Cellulose is actually composed on many chains of the sugar (glucose) units bonded together to form something known as the microfibril. These microfibrils have unique physical properties that are exploited by plants. Cellulose microfibrils are ubiquitous among higher plants where they are important in determining how plant cells grow and also determining how strong the plant material is. We already exploit the properties of cellulose to make paper and cotton, however, cellulose has the potential to be used in a wide range of other applications including novel materials and as a renewable source of sugars for the production of biofuels and chemicals. One of the major advantages of using plant based material is that plants obtain their carbon from the atmosphere in form of CO2 and so using plant material such as cellulose is not only renewable, but dramatically reduces net carbon emission into the atmosphere compared to the use of fossil fuels. Cellulose is synthesis by a unique enzyme complex that sits in the plasma membrane that surrounds the contents of every cell. Each cellulose synthase complex makes around 18 chains that bond together to form a microfibril. These microfibrils are rigid structures and so as the complex adds sugars to the growing chains, it is effectively driven along the plasma membrane. Given the large size of the complex, it will cause severe local disruption of the plasma membrane. The plasma membrane is composed of lipids that provide a fluid environment that allows movement of the cellulose synthase complex, but it is essential the cells maintain the integrity of the plasma membrane for its viability. Movement of the cellulose synthase complex is governed by long tubular structures known as microtubules that sit close to the plasma membrane and guide the movement of cellulose synthase complex and hence orientation of the cellulose microfibrils. Orientation of cellulose microfibrils is essential for the growth of plant cells and has a major influence on their physical properties.Although cellulose is very abundant, there are several technological challenges associated with studying cellulose, including separating it from other parts of the cell wall and breaking up its strongly bonded structure. Surprisingly, the vast importance of cellulose is not matched by our understanding of the processes behind its formation. We have become interested in how the individual components of the cellulose synthase complex are modified by the addition of fatty acid groups. These fatty acid groups are very hydrophobic and have a very high affinity for membranes. We believe this has an essential role in locking the cellulose synthase complex into the plasma membrane and preventing it "popping out" as the complex moves through the membrane. The cells are also faced with another logistical problem, as the plasma membrane is crowded with many other components. We now want to look at how the plasma membrane might be partitioned to allow unimpeded movement of the cellulose synthase complex. We will investigate how the addition of hydrophobic fatty acid groups both to the cellulose synthase complex and to the underlying microtubules contributes their co-localisation and the ability of the cell to form membrane partitions at sites of cellulose synthesis.Ultimately this work should provide a framework that we can use to make changes that may alter the properties of the cellulose that it produces. It is already known that some mutations reduce the crystalinity of the cellulose and so make it easier to breakdown into its constituent sugars that maybe used for biofuels or other industrial applications. It is likely that a better understanding of the local environment in which plants make cellulose may help us to alter other cellulose properties such as microfibril length.
纤维素是许多植物细胞壁的主要成分,被认为是世界上最丰富的天然聚合物。纤维素实际上是由许多糖(葡萄糖)单位链结合在一起,形成所谓的微纤维。这些微纤维具有被植物利用的独特物理性质。纤维素微纤丝在高等植物中普遍存在,它们在决定植物细胞如何生长以及植物材料的强度方面很重要。我们已经利用纤维素的特性来制造纸张和棉花,然而,纤维素有潜力用于广泛的其他应用,包括新材料和作为生产生物燃料和化学品的可再生糖源。使用植物基材料的主要优点之一是植物以CO2的形式从大气中获得碳,因此使用植物材料如纤维素不仅是可再生的,而且与使用化石燃料相比,大大减少了向大气中的净碳排放。纤维素是由一种独特的酶复合物合成的,这种酶复合物位于围绕每个细胞内容物的质膜中。每个纤维素合酶复合物产生大约18条链,这些链结合在一起形成微纤维。这些微纤维是刚性结构,因此当复合物将糖添加到生长链时,它被有效地沿着质膜沿着驱动。考虑到复合物的大尺寸,它将导致质膜的严重局部破坏。质膜由脂质组成,脂质提供允许纤维素合酶复合物移动的流体环境,但细胞维持质膜的完整性对于其存活力至关重要。纤维素合酶复合物的运动由称为微管的长管状结构控制,所述微管靠近质膜并引导纤维素合酶复合物的运动,从而引导纤维素微纤维的取向。纤维素微纤丝的定向对植物细胞的生长至关重要,并对其物理性质有重要影响。虽然纤维素非常丰富,但研究纤维素存在一些技术挑战,包括将其与细胞壁的其他部分分离并打破其牢固的结合结构。令人惊讶的是,纤维素的巨大重要性与我们对其形成过程的理解并不匹配。我们对纤维素合酶复合物的各个组分如何通过添加脂肪酸基团而被修饰感兴趣。这些脂肪酸基团是非常疏水的,并且对膜具有非常高的亲和力。我们相信这在将纤维素合酶复合物锁定在质膜中并防止其在复合物穿过膜时“弹出”方面具有重要作用。细胞还面临着另一个后勤问题,因为质膜上挤满了许多其他成分。我们现在想看看质膜是如何被分配的,以使纤维素合酶复合体的运动不受阻碍。我们将研究如何加入疏水脂肪酸基团的纤维素合成酶复合物和底层微管有助于他们的co-localisation和细胞的能力,以形成膜分区在网站的纤维素synthesization. Finally这项工作应该提供一个框架,我们可以使用的变化,可能会改变它产生的纤维素的性质。我们已经知道,一些突变会降低纤维素的结晶度,从而使其更容易分解成可能用于生物燃料或其他工业应用的组成糖。更好地了解植物制造纤维素的局部环境可能有助于我们改变纤维素的其他特性,如微纤维长度。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An atlas of Arabidopsis protein S-Acylation reveals its widespread role in plant cell organisation of and function
  • DOI:
    10.1101/2020.05.12.090415
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Kumar;P. Carr;S. Turner
  • 通讯作者:
    M. Kumar;P. Carr;S. Turner
Exploiting CELLULOSE SYNTHASE (CESA) Class Specificity to Probe Cellulose Microfibril Biosynthesis
  • DOI:
    10.1104/pp.18.00263
  • 发表时间:
    2018-05-01
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Kumar, Manoj;Mishra, Laxmi;Turner, Simon
  • 通讯作者:
    Turner, Simon
The role of lipid-modified proteins in cell wall synthesis and signaling.
  • DOI:
    10.1093/plphys/kiad491
  • 发表时间:
    2023-12-30
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Quinn, Oliver;Kumar, Manoj;Turner, Simon
  • 通讯作者:
    Turner, Simon
Flexible and digestible wood caused by viral-induced alteration of cell wall composition.
由病毒诱导的细胞壁组成改变引起的柔性和易消化的木材。
  • DOI:
    10.1016/j.cub.2022.06.005
  • 发表时间:
    2022-08-08
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Allen, Holly;Zeef, Leo;Morreel, Kris;Goeminne, Geert;Kumar, Manoj;Gomez, Leonardo D.;Dean, Andrew P.;Eckmann, Axel;Casiraghi, Cinzia;McQueen-Mason, Simon J.;Boerjan, Wout;Turner, Simon R.
  • 通讯作者:
    Turner, Simon R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Turner其他文献

Removal of roosters alters the domestic phenotype and microbial and genetic profile of hens
  • DOI:
    10.1007/s11427-020-1770-1
  • 发表时间:
    2021-02-04
  • 期刊:
  • 影响因子:
    9.500
  • 作者:
    Hai Xiang;Siyu Chen;Hui Zhang;Xu Zhu;Dan Wang;Huagui Liu;Jikun Wang;Tao Yin;Langqing Liu;Minghua Kong;Jian Zhang;Hua Li;Simon Turner;Xingbo Zhao
  • 通讯作者:
    Xingbo Zhao
Long-term outcomes after per-oral endoscopic myotomy versus laparoscopic Heller myotomy in the treatment of achalasia: a systematic review and meta-analysis
The Structure, Expression and Arrangement of Legumin Genes in Peas
  • DOI:
    10.1016/s0015-3796(88)80094-5
  • 发表时间:
    1988-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rod Casey;Claire Domoney;Noel Ellis;Simon Turner
  • 通讯作者:
    Simon Turner
Endoscopic incisional therapy for benign anastomotic strictures after esophagectomy or gastrectomy: a systematic review and meta-analysis
  • DOI:
    10.1007/s00464-024-10817-8
  • 发表时间:
    2024-04-22
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Zaharadeen Jimoh;Uzair Jogiat;Alex Hajjar;Kevin Verhoeff;Simon Turner;Clarence Wong;Janice Y. Kung;Eric L. R. Bédard
  • 通讯作者:
    Eric L. R. Bédard
Tonga-Kermadec Subduction Zones: Stress, Topography and Geoid in Dynamic Flow Models with a Low Viscosity Wedge
汤加-克马德克俯冲带:低粘度楔动态流模型中的应力、地形和大地水准面
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. George;Simon Turner;C. Hawkesworth;Julie Morris;Chris Nye;Jeff Ryan;Shu
  • 通讯作者:
    Shu

Simon Turner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Turner', 18)}}的其他基金

Exploiting a cellulose synthase interactome to understand assembly and trafficking of the plant cellulose synthase complex
利用纤维素合酶相互作用组来了解植物纤维素合酶复合物的组装和运输
  • 批准号:
    BB/X016919/1
  • 财政年份:
    2023
  • 资助金额:
    $ 58.2万
  • 项目类别:
    Research Grant
Promoting contest skill to reduce the welfare costs of animal agonistic interactions
提高竞赛技能以降低动物竞争性互动的福利成本
  • 批准号:
    BB/W000563/1
  • 财政年份:
    2022
  • 资助金额:
    $ 58.2万
  • 项目类别:
    Research Grant
Operationalising social competence and estimating its genetic and genomic basis to improve the welfare of pigs
运用社会能力并评估其遗传和基因组基础,以改善猪的福利
  • 批准号:
    BB/V001515/1
  • 财政年份:
    2022
  • 资助金额:
    $ 58.2万
  • 项目类别:
    Research Grant
Determining how cognitive ability and affective state impact assessment strategies during aggressive contests to improve pig welfare after regrouping
确定认知能力和情感状态如何影响攻击性竞赛期间的评估策略,以改善重组后猪的福利
  • 批准号:
    BB/T001046/1
  • 财政年份:
    2020
  • 资助金额:
    $ 58.2万
  • 项目类别:
    Research Grant
Understanding assessment strategies during aggressive encounters in pigs to improve welfare following regrouping.
了解猪在攻击性遭遇期间的评估策略,以改善重组后的福利。
  • 批准号:
    BB/L000393/1
  • 财政年份:
    2014
  • 资助金额:
    $ 58.2万
  • 项目类别:
    Research Grant
Unravelling the organisation, composition and dynamics of the plant cellulose synthase complex
揭示植物纤维素合酶复合物的组织、组成和动力学
  • 批准号:
    BB/M004031/1
  • 财政年份:
    2014
  • 资助金额:
    $ 58.2万
  • 项目类别:
    Research Grant
Analysis of a novel mechanism that regulates microtubule severing in
调节微管切断的新机制的分析
  • 批准号:
    BB/L003279/1
  • 财政年份:
    2013
  • 资助金额:
    $ 58.2万
  • 项目类别:
    Research Grant
Regulation of cell division during plant vascular development
植物维管发育过程中细胞分裂的调节
  • 批准号:
    BB/H019928/1
  • 财政年份:
    2010
  • 资助金额:
    $ 58.2万
  • 项目类别:
    Research Grant
The role of CESA protein modification in localisation and function of the cellulose synthase complex
CESA 蛋白修饰在纤维素合酶复合物的定位和功能中的作用
  • 批准号:
    BB/H012923/1
  • 财政年份:
    2010
  • 资助金额:
    $ 58.2万
  • 项目类别:
    Research Grant
Systematic small molecule analysis using GC-MS
使用 GC-MS 进行系统性小分子分析
  • 批准号:
    BB/E013155/1
  • 财政年份:
    2008
  • 资助金额:
    $ 58.2万
  • 项目类别:
    Research Grant

相似国自然基金

TLS聚合酶Polη乙酰化修饰的动态调控和功能研究
  • 批准号:
    31970740
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Greasing endocytosis in plants - understanding the role of S-acylation in receptor kinase function and internalisation
植物中的润滑内吞作用 - 了解 S-酰化在受体激酶功能和内化中的作用
  • 批准号:
    BB/Y003756/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.2万
  • 项目类别:
    Research Grant
Ghrelin de-acylation inhibitors as novel compounds for Parkinson's dementia
生长素释放肽去酰化抑制剂作为治疗帕金森痴呆症的新型化合物
  • 批准号:
    MR/Y503435/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.2万
  • 项目类别:
    Research Grant
Discovery of phosgene and chlorine gas modes of action and therapeutic targets using chemoproteomic profiling strategies
使用化学蛋白质组学分析策略发现光气和氯气的作用模式和治疗靶点
  • 批准号:
    10883970
  • 财政年份:
    2023
  • 资助金额:
    $ 58.2万
  • 项目类别:
Time-restricted eating: Is it an efficacious tool for weight loss maintenance
限时饮食:是减肥维持的有效工具吗
  • 批准号:
    10591316
  • 财政年份:
    2023
  • 资助金额:
    $ 58.2万
  • 项目类别:
Project 1
项目1
  • 批准号:
    10762160
  • 财政年份:
    2023
  • 资助金额:
    $ 58.2万
  • 项目类别:
Structural basis for regulation of beta2 adrenergic receptor signaling by the dynamic post-translational modification S-palmitoylation
动态翻译后修饰S-棕榈酰化调节β2肾上腺素受体信号传导的结构基础
  • 批准号:
    10603466
  • 财政年份:
    2023
  • 资助金额:
    $ 58.2万
  • 项目类别:
Examination of Ornithine Decarboxylase Antizyme RNA Structure and Function from Various Organisms for the Development of Antibiological Agents
检查不同生物体的鸟氨酸脱羧酶抗酶 RNA 结构和功能,用于开发抗生素
  • 批准号:
    10730595
  • 财政年份:
    2023
  • 资助金额:
    $ 58.2万
  • 项目类别:
MICT1 function in thermogenesis
MICT1 在生热作用中的功能
  • 批准号:
    10570388
  • 财政年份:
    2023
  • 资助金额:
    $ 58.2万
  • 项目类别:
Multiomics data integration methods to discover putative causal variants, genes and patient heterogeneity for Alzheimers disease
多组学数据整合方法发现阿尔茨海默病的假定因果变异、基因和患者异质性
  • 批准号:
    10587524
  • 财政年份:
    2023
  • 资助金额:
    $ 58.2万
  • 项目类别:
Chemical Synthesis and Biological Application of Carbohydrates and Glycoconjugates
碳水化合物和糖复合物的化学合成和生物应用
  • 批准号:
    10552167
  • 财政年份:
    2023
  • 资助金额:
    $ 58.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了