Analysis of a novel mechanism that regulates microtubule severing in

调节微管切断的新机制的分析

基本信息

  • 批准号:
    BB/L003279/1
  • 负责人:
  • 金额:
    $ 49.4万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

The growth and shape of a plant cell is determined by the direction of cell expansion. This expansion is remarkable as plant cells can expand up to 1000 times their original size. For many cells, such as those in the stem or root, expansion needs to occur in a single direction (i.e. upwards) for proper plant growth to occur. To achieve this directional expansion, plant cells need to organise their cell wall and particularly cellulose a very strong fibrillar polymer that has a big influence of cell wall mechanical properties. Cellulose is normally deposited perpendicular to the direction of cell expansion. A protein scaffold, referred to as the microtubule network that is found within the cells, dictates the organisation of cellulose within the wall. Microtubules are able to adopt different patterns. Expansion in a single direction requires a pattern of aligned microtubules whereas expansion in several directions results from a net-like or mesh pattern of microtubules.Our previous work has found that the microtubules organise themselves into an aligned configuration by cutting away any unaligned microtubules. Without this cutting, microtubules instead adopt a net-like configuration. The cutting machinery recognises unaligned microtubules by only cutting those that crossover existing microtubules. There is increasing evidence that microtubule rearrangements that are essential for many aspects of normal plant growth depend upon microtubule severing. An enzyme called katanin carries out microtubule severing. Katanin mutants have only "net-like" arrays.We have recently found that plants containing defects in a second protein, called SPIRAL2 (SPR2), that fail to form net-like arrays in cells that normally adopt this pattern. Instead they form a predominantly aligned array. Whereas a katanin mutant does not cut microtubules, a spiral2 mutant shows high rates of microtubule severing. This suggests that the amount of cutting at microtubule crossovers ultimately determines how the microtubules will be organised. It also points to SPIRAL2 being an important factor that modifies the activity of katanin. The SPIRAL2 proteins is present in all cells, but in some cell types it remains attached to microtubules crossover points, while it is constantly moving along microtubules in other cell types allowing severing of microtubules. Stationary binding of SPR2 at crossover points is what appears to prevent severing. We would now like to know more about what controls the activity of SPR2 and understand how it is able to recognise and bind to microtubule crossover points, what determines SPR2 behaviour, i.e. whether SPR2 binds to microtubule crossover points or moves along microtubules and what other factors it need to help it regulate microtubule severing and microtubule array alignment.Our proposed work will probe what determine SPR2 localisation and mobility. Not only will this work answer important fundamental questions about cell growth and microtubule patterning (including identifying the underlying mechanism that gives rise to twisted growth), but will potentially give us the ability to predictably alter microtubule patterns. In the future this may allow us to manipulate plant development and engineers more efficient canopies or stronger shorter stems. It may also provide a means of increasing plant biomass either for better crop yields or to generate material for bioenergy production.
植物细胞的生长和形状由细胞扩张的方向决定。这种扩张是值得注意的,因为植物细胞可以扩张到原来大小的1000倍。对于许多细胞,如茎或根中的细胞,需要在单一方向(即向上)发生扩张,才能使植物正常生长。为了实现这种定向扩张,植物细胞需要组织它们的细胞壁,特别是纤维素,这是一种非常强大的纤维状聚合物,对细胞壁的机械性能有很大影响。纤维素通常垂直于细胞扩张的方向沉积。在细胞内发现的一种蛋白质支架,称为微管网络,决定了壁内纤维素的组织。微管可以采用不同的模式。在单个方向上的膨胀需要排列的微管图案,而在多个方向上的扩张是由网状或网状的微管图案引起的。我们先前的工作发现,通过切断任何未对准的微管,微管将自己组织成排列的结构。如果没有这种切割,微管就会采用网状结构。切割机器只切割那些与现有微管交叉的微管,从而识别未对齐的微管。越来越多的证据表明,微管重排对植物正常生长的许多方面都是必不可少的,这依赖于微管的切断。一种名为katanin的酶可以切断微管。我们最近发现,含有第二种蛋白质SPIRAL2(SPR2)缺陷的植物,在通常采用这种模式的细胞中无法形成网状阵列。相反,它们形成了一个主要排列的阵列。然而,katanin突变体不会切断微管,而螺旋2突变体显示出高比例的微管切断。这表明,微管交叉处的切割量最终决定了微管的组织方式。它还指出SPIRAL2是修饰katanin活性的一个重要因素。SPIRAL2蛋白存在于所有细胞中,但在某些类型的细胞中,它仍然附着在微管交叉点上,而在其他类型的细胞中,它不断地沿着微管移动,从而使微管被切断。SPR2在交叉点的固定结合似乎阻止了断裂。我们现在想知道更多的是什么控制着SPR2的活性,了解它是如何识别和结合微管交叉点的,是什么决定了SPR2的行为,即SPR2是与微管交叉点结合还是沿着微管移动,以及它需要哪些其他因素来帮助它调节微管切断和微管阵列排列。我们拟议的工作将探索是什么决定了SPR2的定位和移动性。这项工作不仅将回答关于细胞生长和微管模式的重要基本问题(包括确定导致扭曲生长的潜在机制),而且还将潜在地使我们有能力可预测地改变微管模式。在未来,这可能允许我们操纵植物的发展,并设计更高效的树冠或更强壮的短茎。它还可以提供一种增加植物生物量的手段,要么是为了提高作物产量,要么是为了生产用于生物能源生产的材料。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SPIRAL2 determines plant microtubule organization by modulating microtubule severing.
  • DOI:
    10.1016/j.cub.2013.07.061
  • 发表时间:
    2013-10-07
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Wightman, Raymond;Chomicki, Guillaume;Kumar, Manoj;Carr, Paul;Turner, Simon R.
  • 通讯作者:
    Turner, Simon R.
Wood Formation in Trees Is Increased by Manipulating PXY-Regulated Cell Division.
  • DOI:
    10.1016/j.cub.2015.02.023
  • 发表时间:
    2015-04-20
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Etchells, J. Peter;Mishra, Laxmi S.;Kumar, Manoj;Campbell, Liam;Turner, Simon R.
  • 通讯作者:
    Turner, Simon R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Turner其他文献

Removal of roosters alters the domestic phenotype and microbial and genetic profile of hens
  • DOI:
    10.1007/s11427-020-1770-1
  • 发表时间:
    2021-02-04
  • 期刊:
  • 影响因子:
    9.500
  • 作者:
    Hai Xiang;Siyu Chen;Hui Zhang;Xu Zhu;Dan Wang;Huagui Liu;Jikun Wang;Tao Yin;Langqing Liu;Minghua Kong;Jian Zhang;Hua Li;Simon Turner;Xingbo Zhao
  • 通讯作者:
    Xingbo Zhao
Long-term outcomes after per-oral endoscopic myotomy versus laparoscopic Heller myotomy in the treatment of achalasia: a systematic review and meta-analysis
The Structure, Expression and Arrangement of Legumin Genes in Peas
  • DOI:
    10.1016/s0015-3796(88)80094-5
  • 发表时间:
    1988-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rod Casey;Claire Domoney;Noel Ellis;Simon Turner
  • 通讯作者:
    Simon Turner
Endoscopic incisional therapy for benign anastomotic strictures after esophagectomy or gastrectomy: a systematic review and meta-analysis
  • DOI:
    10.1007/s00464-024-10817-8
  • 发表时间:
    2024-04-22
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Zaharadeen Jimoh;Uzair Jogiat;Alex Hajjar;Kevin Verhoeff;Simon Turner;Clarence Wong;Janice Y. Kung;Eric L. R. Bédard
  • 通讯作者:
    Eric L. R. Bédard
Tonga-Kermadec Subduction Zones: Stress, Topography and Geoid in Dynamic Flow Models with a Low Viscosity Wedge
汤加-克马德克俯冲带:低粘度楔动态流模型中的应力、地形和大地水准面
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. George;Simon Turner;C. Hawkesworth;Julie Morris;Chris Nye;Jeff Ryan;Shu
  • 通讯作者:
    Shu

Simon Turner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Turner', 18)}}的其他基金

Exploiting a cellulose synthase interactome to understand assembly and trafficking of the plant cellulose synthase complex
利用纤维素合酶相互作用组来了解植物纤维素合酶复合物的组装和运输
  • 批准号:
    BB/X016919/1
  • 财政年份:
    2023
  • 资助金额:
    $ 49.4万
  • 项目类别:
    Research Grant
Promoting contest skill to reduce the welfare costs of animal agonistic interactions
提高竞赛技能以降低动物竞争性互动的福利成本
  • 批准号:
    BB/W000563/1
  • 财政年份:
    2022
  • 资助金额:
    $ 49.4万
  • 项目类别:
    Research Grant
Operationalising social competence and estimating its genetic and genomic basis to improve the welfare of pigs
运用社会能力并评估其遗传和基因组基础,以改善猪的福利
  • 批准号:
    BB/V001515/1
  • 财政年份:
    2022
  • 资助金额:
    $ 49.4万
  • 项目类别:
    Research Grant
Determining how cognitive ability and affective state impact assessment strategies during aggressive contests to improve pig welfare after regrouping
确定认知能力和情感状态如何影响攻击性竞赛期间的评估策略,以改善重组后猪的福利
  • 批准号:
    BB/T001046/1
  • 财政年份:
    2020
  • 资助金额:
    $ 49.4万
  • 项目类别:
    Research Grant
The role of acylation in cellulose synthesis
酰化在纤维素合成中的作用
  • 批准号:
    BB/P01013X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 49.4万
  • 项目类别:
    Research Grant
Understanding assessment strategies during aggressive encounters in pigs to improve welfare following regrouping.
了解猪在攻击性遭遇期间的评估策略,以改善重组后的福利。
  • 批准号:
    BB/L000393/1
  • 财政年份:
    2014
  • 资助金额:
    $ 49.4万
  • 项目类别:
    Research Grant
Unravelling the organisation, composition and dynamics of the plant cellulose synthase complex
揭示植物纤维素合酶复合物的组织、组成和动力学
  • 批准号:
    BB/M004031/1
  • 财政年份:
    2014
  • 资助金额:
    $ 49.4万
  • 项目类别:
    Research Grant
Regulation of cell division during plant vascular development
植物维管发育过程中细胞分裂的调节
  • 批准号:
    BB/H019928/1
  • 财政年份:
    2010
  • 资助金额:
    $ 49.4万
  • 项目类别:
    Research Grant
The role of CESA protein modification in localisation and function of the cellulose synthase complex
CESA 蛋白修饰在纤维素合酶复合物的定位和功能中的作用
  • 批准号:
    BB/H012923/1
  • 财政年份:
    2010
  • 资助金额:
    $ 49.4万
  • 项目类别:
    Research Grant
Systematic small molecule analysis using GC-MS
使用 GC-MS 进行系统性小分子分析
  • 批准号:
    BB/E013155/1
  • 财政年份:
    2008
  • 资助金额:
    $ 49.4万
  • 项目类别:
    Research Grant

相似国自然基金

Novel-miR-1134调控LHCGR的表达介导拟 穴青蟹卵巢发育的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
  • 批准号:
    82304677
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
  • 批准号:
    32002421
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
  • 批准号:
    31902347
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Analysis of the mechanism of hemolytic anemia in canine babesiosis and development of novel therapeutic measures
犬巴贝斯虫病溶血性贫血机制分析及新治疗措施开发
  • 批准号:
    23KJ0074
  • 财政年份:
    2023
  • 资助金额:
    $ 49.4万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Advanced Sample Preparation, Separation and Multiplexed Analysis for In-Depth Proteome Profiling of >1000 Single Cells Per Day
先进的样品制备、分离和多重分析,每天对超过 1000 个单细胞进行深入的蛋白质组分析
  • 批准号:
    10642310
  • 财政年份:
    2023
  • 资助金额:
    $ 49.4万
  • 项目类别:
Metabolic flux analysis and PDX models to understand therapeutic vulnerabilities following inhibition of Ref-1 redox signaling in pancreatic cancer
代谢通量分析和 PDX 模型可了解胰腺癌中 Ref-1 氧化还原信号传导抑制后的治疗脆弱性
  • 批准号:
    10717281
  • 财政年份:
    2023
  • 资助金额:
    $ 49.4万
  • 项目类别:
Project 2 Human Tumor Analysis
项目2 人类肿瘤分析
  • 批准号:
    10729467
  • 财政年份:
    2023
  • 资助金额:
    $ 49.4万
  • 项目类别:
Data Processing, Analysis and Modeling Unit
数据处理、分析和建模单元
  • 批准号:
    10902925
  • 财政年份:
    2023
  • 资助金额:
    $ 49.4万
  • 项目类别:
Analysis of the mechanism of pyroptosis induction as novel therapeutic approach against intracellular bacteria
细胞焦亡诱导作为针对细胞内细菌的新治疗方法的机制分析
  • 批准号:
    22KJ0028
  • 财政年份:
    2023
  • 资助金额:
    $ 49.4万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Analysis of the novel molecular mechanism how a mitochondrial gene inhibits anther dehiscence in rice
线粒体基因抑制水稻花药开裂的新分子机制分析
  • 批准号:
    22KJ0308
  • 财政年份:
    2023
  • 资助金额:
    $ 49.4万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
A Novel Mechanism of Stomatitis Pathogenesis Based on Transcriptome Analysis of a Stomatitis Initiation Stage Model
基于口腔炎起始阶段模型转录组分析的口腔炎发病机制的新机制
  • 批准号:
    23K16150
  • 财政年份:
    2023
  • 资助金额:
    $ 49.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Temporal analysis of the GBM tumor microenvironment during myeloid cell activating therapy
骨髓细胞激活治疗期间 GBM 肿瘤微环境的时间分析
  • 批准号:
    10704328
  • 财政年份:
    2023
  • 资助金额:
    $ 49.4万
  • 项目类别:
A novel theory of the magnetostriction mechanism using topological data analysis
使用拓扑数据分析的磁致伸缩机制的新理论
  • 批准号:
    22K14590
  • 财政年份:
    2022
  • 资助金额:
    $ 49.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了