Bilateral BBSRC-SFI: Deciphering the function of the human Dihydrofolate reductase 2 gene

双边 BBSRC-SFI:破译人类二氢叶酸还原酶 2 基因的功能

基本信息

  • 批准号:
    BB/P018084/1
  • 负责人:
  • 金额:
    $ 59.01万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Folates are a type of B vitamin that consists of a group of small molecules that are needed in nearly every cell in the body to fulfil a number of essential functions including synthesis of DNA for cell division. Like all vitamins, we need to ensure that we consume a sufficient amount of folate to maintain our health. Inadequate folate is implicated in birth defects, inborn errors of metabolism, neurological problems, autism, fatty liver disease, age-related and cognitive impairment and many cancers. We need to understand the pathway that uses folate, known as folate metabolism, and how it is regulated in different tissues and stages of development before and after birth.The individual steps of folate metabolism are mediated by a specialised set of proteins, called enzymes, one of the most important being Dihydrofolate Reductase (DHFR). Lack of DHFR function suppresses folate metabolism and prevents cells dividing - this is very harmful in normal tissue but can be exploited as the basis of action of some drugs for the treatment of cancer. DHFR is also the route of entry into folate metabolism of folic acid, which is included in fortified foods and vitamin supplements for prevention of birth defects such as spina bifida. Despite public health messages, many women still become pregnant with inadequate folate status. Further research on folate and human health is essential to inform the public health discussion on the introduction of mandatory fortification policies across Europe.Notably we found that humans and other primates have acquired a second DHFR gene, DHFR2, during evolution whereas other mammals have only one. Little is known about the function of DHFR2 but we find that the gene is active in many tissues and genetic studies show that alteration of DHFR2 may be linked to increased risk of a group of severe birth defects termed neural tube defects (NTDs), in which the early events of brain and spinal cord development fail. These findings suggest that DHFR2 may play a key role during development. To gain a better understanding of human folate metabolism it is important to investigate the role of DHFR2 and to ask whether it has similar or distinct functions to DHFR. We will study how DHFR2 protein abundance and location changes as stem cells differentiate and become more specialised cell types such as neurons. We will use genetic tools to remove DHFR2 from cells in culture and investigate the consequences for cellular properties such as proliferation and differentiation, as well as activity of folate metabolism. In parallel, we will ask how the relative levels and location of DHFR and DHFR2 differ in varying conditions. This knowledge will all help to understand what it does. The next step will be to investigate the role of DHFR2 during development and we will find out where DHFR2 is expressed in human embryos at differing stages. In order to move this work to living embryos we will generate new mouse strains in which the mouse DHFR gene is replaced with human DHFR or DHFR2 or both. These mouse models will allow us to ask detailed questions about the function of each protein. Can human DHFR or DHFR2 substitute for the mouse protein? Is the presence of only DHFR2 sufficient for normal development or do these embryos show changes in growth, neural development and/or folate metabolism? In this way, the study of 'humanised' mice that express only DHFR or DHFR2 will tell us about the individual functions of the enzymes that is difficult to address in human cells that have both.Having established the functions of DHFR2 in human cells and mouse models, the final part of the project will examine the regulation of the protein in more detail. We will test whether it is present in different structural forms, whether it is modified at particular sites and how its production is regulated. Overall, this project will give new insight into a fundamental metabolic pathway that is crucial for human health.
叶酸是一种B族维生素,它由一组小分子组成,人体内几乎每个细胞都需要这些小分子来完成一些基本功能,包括合成细胞分裂所需的DNA。像所有的维生素一样,我们需要确保摄入足够的叶酸来维持我们的健康。叶酸不足与出生缺陷、先天新陈代谢障碍、神经问题、自闭症、脂肪肝、年龄相关和认知障碍以及许多癌症有关。我们需要了解使用叶酸的途径,也就是我们所知的叶酸代谢,以及它在出生前和出生后不同组织和发育阶段是如何调节的。叶酸代谢的各个步骤是由一组特殊的蛋白质介导的,称为酶,其中最重要的是二氢叶酸还原酶(DHFR)。缺乏dhfr功能会抑制叶酸代谢,阻止细胞分裂--这在正常组织中是非常有害的,但可以作为一些治疗癌症的药物的作用基础。DHFR也是叶酸进入叶酸代谢的途径,叶酸包括在强化食品和维生素补充剂中,用于预防出生缺陷,如脊柱裂。尽管有公共卫生信息,但许多妇女怀孕时叶酸水平仍然不足。对叶酸和人类健康的进一步研究对于在整个欧洲引入强制性强化政策的公共卫生讨论至关重要。值得注意的是,我们发现人类和其他灵长类动物在进化过程中获得了第二个DHFR基因DHFR2,而其他哺乳动物只有一个。人们对DHFR2的功能知之甚少,但我们发现该基因在许多组织中都很活跃,遗传学研究表明,DHFR2的改变可能与一组称为神经管缺陷(NTDS)的严重出生缺陷的风险增加有关,在NTDS中,大脑和脊髓发育的早期事件失败。这些发现表明,DHFR2可能在发育过程中发挥关键作用。为了更好地了解人类的叶酸代谢,重要的是要研究DHFR2的作用,并询问它是否具有与DHFR相似或不同的功能。我们将研究DHFR2蛋白的丰度和位置如何随着干细胞的分化而变化,并成为更专业化的细胞类型,如神经元。我们将使用基因工具将DHFR2从培养的细胞中移除,并研究其对细胞特性的影响,如增殖和分化,以及叶酸代谢的活性。同时,我们将询问DHFR和DHFR2在不同条件下的相对水平和位置有何不同。这些知识都将有助于理解它的作用。下一步将是研究DHFR2在发育过程中的作用,我们将找出DHFR2在人类胚胎不同阶段的表达情况。为了将这项工作转移到活胚胎上,我们将产生新的小鼠品系,其中小鼠的DHFR基因被人的DHFR或DHFR2或两者都取代。这些小鼠模型将允许我们询问关于每种蛋白质功能的详细问题。人的DHFR或DHFR2能替代小鼠的蛋白质吗?只有DHFR2的存在对于正常发育是足够的吗?或者这些胚胎是否在生长、神经发育和/或叶酸代谢方面发生了变化?通过这种方式,对只表达DHFR或DHFR2的人源化小鼠的研究将告诉我们这些酶的个别功能,而这些酶在拥有两者的人类细胞中是很难解决的。在确定了DHFR2在人类细胞和小鼠模型中的功能后,该项目的最后部分将更详细地研究蛋白质的调节。我们将测试它是否以不同的结构形式存在,它是否在特定的位置被修改,以及它的生产是如何受到监管的。总体而言,该项目将对对人类健康至关重要的基本代谢途径提供新的见解。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Differential Translation Capabilities of the Human DHFR2 Gene Indicates a Developmental and Tissue-Specific Endogenous Protein of Low Abundance.
人类 DHFR2 基因的差异翻译能力表明发育和组织特异性的低丰度内源蛋白。
  • DOI:
    10.1016/j.mcpro.2024.100718
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bookey N
  • 通讯作者:
    Bookey N
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Greene其他文献

dVPose: Automated Data Collection and Dataset for 6D Pose Estimation of Robotic Surgical Instruments
dVPose:用于机器人手术器械 6D 姿态估计的自动数据收集和数据集
06-P051 Mechanisms of spina bifida in the Zic2-Kumba mouse
  • DOI:
    10.1016/j.mod.2009.06.277
  • 发表时间:
    2009-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Saba Raza;Valentina Massa;Nicholas Greene;Andrew Copp
  • 通讯作者:
    Andrew Copp

Nicholas Greene的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Greene', 18)}}的其他基金

The Glycine Cleavage System in Brain Development, Function and Disease
大脑发育、功能和疾病中的甘氨酸裂解系统
  • 批准号:
    MR/W00500X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 59.01万
  • 项目类别:
    Research Grant
Prevention of Neural Tube Defects by Inositol and Vitamin B12 (PONTib) - Development Trial
通过肌醇和维生素 B12 (PONTib) 预防神经管缺陷 - 开发试验
  • 批准号:
    MR/T003847/1
  • 财政年份:
    2021
  • 资助金额:
    $ 59.01万
  • 项目类别:
    Research Grant
Understanding the role of the Glycine Cleavage System in Neural Tube Defects
了解甘氨酸裂解系统在神经管缺陷中的作用
  • 批准号:
    MR/N003713/1
  • 财政年份:
    2016
  • 资助金额:
    $ 59.01万
  • 项目类别:
    Research Grant
Folate metabolism and development of Neural Tube Defects
叶酸代谢与神经管缺陷的发展
  • 批准号:
    MR/J003794/1
  • 财政年份:
    2012
  • 资助金额:
    $ 59.01万
  • 项目类别:
    Research Grant
Grainyhead-like genes and mammalian neural tube defects
粒头样基因和哺乳动物神经管缺陷
  • 批准号:
    G0802163/1
  • 财政年份:
    2010
  • 资助金额:
    $ 59.01万
  • 项目类别:
    Research Grant
Inositol-preventable neural tube defects: understanding the molecular causes and mechanisms of prevention
肌醇可预防的神经管缺陷:了解分子原因和预防机制
  • 批准号:
    G0601546/1
  • 财政年份:
    2007
  • 资助金额:
    $ 59.01万
  • 项目类别:
    Research Grant

相似海外基金

BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y000455/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.01万
  • 项目类别:
    Research Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y001117/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.01万
  • 项目类别:
    Research Grant
22-BBSRC/NSF-BIO Building synthetic regulatory units to understand the complexity of mammalian gene expression
22-BBSRC/NSF-BIO 构建合成调控单元以了解哺乳动物基因表达的复杂性
  • 批准号:
    BB/Y008898/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.01万
  • 项目类别:
    Research Grant
22-BBSRC/NSF-BIO - Interpretable & Noise-robust Machine Learning for Neurophysiology
22-BBSRC/NSF-BIO - 可解释
  • 批准号:
    BB/Y008758/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.01万
  • 项目类别:
    Research Grant
22-BBSRC/NSF-BIO: Community-dependent CRISPR-cas evolution and robust community function
22-BBSRC/NSF-BIO:群落依赖性 CRISPR-cas 进化和强大的群落功能
  • 批准号:
    BB/Y008774/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.01万
  • 项目类别:
    Research Grant
20-BBSRC/NSF-BIO Regulatory control of innate immune response in marine invertebrates
20-BBSRC/NSF-BIO 海洋无脊椎动物先天免疫反应的调节控制
  • 批准号:
    BB/W017865/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.01万
  • 项目类别:
    Research Grant
UKRI/BBSRC-NSF/BIO: Interpretable and Noise-Robust Machine Learning for Neurophysiology
UKRI/BBSRC-NSF/BIO:用于神经生理学的可解释且抗噪声的机器学习
  • 批准号:
    2321840
  • 财政年份:
    2023
  • 资助金额:
    $ 59.01万
  • 项目类别:
    Continuing Grant
BBSRC Institute Strategic Programme: Microbes and Food Safety
BBSRC 研究所战略计划:微生物与食品安全
  • 批准号:
    BB/X018814/1
  • 财政年份:
    2023
  • 资助金额:
    $ 59.01万
  • 项目类别:
    Research Grant
BBSRC IAA University of Southampton
BBSRC IAA 南安普顿大学
  • 批准号:
    BB/X51231X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 59.01万
  • 项目类别:
    Research Grant
BBSRC IAA University of Reading
BBSRC IAA 雷丁大学
  • 批准号:
    BB/X512308/1
  • 财政年份:
    2023
  • 资助金额:
    $ 59.01万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了