Developing the E. coli GlycoCell

开发大肠杆菌 GlycoCell

基本信息

  • 批准号:
    BB/R008124/1
  • 负责人:
  • 金额:
    $ 47.71万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Vaccines are a critical component of defence against infectious disease in both humans and animals. Large scale vaccination has eliminated some of the most dangerous diseases that have faced humanity. Polysaccharides or glycans are complex sugar based structures that are central to everyday life and the biotechnology industry. In contrast to the cloning revolution for DNA and protein molecules, the cloning, expression and characterisation of glycan-based molecules is in its infancy. This is due to the complexity of the structures and difficulties in their purification and production in a simple system that faithfully reproduces the molecules in sufficient yield. Polysaccharides are large chains made up of sugars that are often unique to each species of bacterium. They can be found in an almost infinite variety of structures, most of which remain to be characterised. In addition, the sugar chains often coat the outside of the bacterial cell, and are readily detected by the human immune system. These sugar coats therefore make excellent vaccines: they will activate the immune system, which will then detect and respond to an infection by the relevant bacteria much more effectively. The sugar coats make even more effective vaccines if they can be attached to other components of the bacteria such as proteins. This provides multiple triggers for the immune system, and increases the lifetime of the body's immune response to the sugar coat.This project will develop a system to efficiently produce bacterial polysaccharides and polysaccharide-protein combinations that make effective vaccines. A major reason why these sugar coats are not used for vaccines against a wider range of bacteria is that they are often difficult to prepare and to attach to other cellular components, rendering the manufacturing process expensive. Our system will overcome these problems by engineering a safe laboratory bacterium (E. coli) to act as a mini-cell factory and efficiently make the sugar coat. We will use a recently discovered enzyme that will physically link the sugar coat directly to another bacterial component (protein): this reduces the complexity of preparing the vaccine considerably, thereby lowering manufacturing costs. To achieve these goals, we will firstly take a common E. coli bacterium, and remove its own sugar coat components using genetics. This will ensure that the entire product from the system is the desired vaccine. We will then add the components required to make the desired sugar coat: these will consist of genes needed to make individual sugar units, and genes that link these individual units together to make long chains of sugar. We will then engineer into the bacterial cell the ability to attach the sugar coat to other bacterial components (e.g. proteins). As a testing ground, to develop our platform technologies, we have chosen the cloning and expression of several Streptococcus pneumoniae variant capsular polysaccharides. S. pneumoniae is a major pathogen responsible for 14.5 million annual infections worldwide and >800,000 deaths in children under 5 years of age. S. pneumoniae is not just an important global pathogen, it is an ideal model to study for our tailored engineering approach due to the variation in glycostructures present with over 90 different capsular polysaccharides. We will compare the effectiveness of our approach at each stage with our existing technology to efficiently make recombinant S. pneumoniae glycoconjugate vaccines.The efficient cloning and production of polysaccharides in these newly generated E. coli strains promises to break new ground in biotechnological applications requiring the efficient production of polysaccharides or polysaccharide complexes, including making glycoconjugate vaccines. Finally, the knowledge obtained during the project will be invaluable to help educate the scientific community on how to repurpose an E. coli cell for optimal sugar assembly and production.
疫苗是人类和动物预防传染病的关键组成部分。大规模疫苗接种消除了人类面临的一些最危险的疾病。多糖或聚糖是复杂的糖基结构,是日常生活和生物技术行业的核心。与DNA和蛋白质分子的克隆革命相反,基于聚糖的分子的克隆、表达和表征还处于起步阶段。这是由于结构的复杂性以及在以足够产率忠实地再现分子的简单系统中纯化和生产它们的困难。多糖是由糖组成的大链,通常是每个细菌物种所特有的。它们可以在几乎无限多种的结构中找到,其中大部分仍有待鉴定。此外,糖链通常覆盖在细菌细胞的外部,并且很容易被人类免疫系统检测到。因此,这些糖衣是很好的疫苗:它们会激活免疫系统,然后免疫系统会更有效地检测和应对相关细菌的感染。如果能够将这些糖衣附着在细菌的其他成分上,比如蛋白质上,那么它们就能制造出更有效的疫苗。这为免疫系统提供了多种触发因素,并延长了人体对糖衣的免疫反应的寿命。该项目将开发一种系统,以有效地生产细菌多糖和多糖-蛋白质组合,从而制成有效的疫苗。这些糖衣不用于针对更广泛细菌的疫苗的一个主要原因是它们通常难以制备和附着到其他细胞组分上,使得制造过程昂贵。我们的系统将克服这些问题,通过工程设计一个安全的实验室细菌(E。大肠杆菌)作为一个微型细胞工厂,有效地制造糖衣。我们将使用最近发现的一种酶,它将糖外壳直接与另一种细菌成分(蛋白质)物理连接起来:这大大降低了制备疫苗的复杂性,从而降低了生产成本。为了实现这些目标,我们将首先采取一个共同的E。大肠杆菌,并使用遗传学去除其自身的糖壳成分。这将确保来自系统的整个产品是所需的疫苗。然后,我们将添加所需的成分,使所需的糖衣:这些将包括基因所需的个别糖单位,和基因,这些单位连接在一起,使长链的糖。然后,我们将在细菌细胞中设计将糖外壳附着到其他细菌成分(例如蛋白质)的能力。作为一个试验场,我们选择了几种肺炎链球菌变异荚膜多糖的克隆和表达,以发展我们的平台技术。S.肺炎是导致全世界每年1450万例感染和> 800,000例5岁以下儿童死亡的主要病原体。S.肺炎链球菌不仅是一种重要的全球性病原体,而且由于90多种不同荚膜多糖存在的糖结构的变化,它是研究我们定制工程方法的理想模型。我们将比较我们的方法在每个阶段的有效性与我们现有的技术,以有效地使重组S。在这些新产生的E. pneumoniae糖缀合物疫苗中有效克隆和生产多糖。大肠杆菌菌株有望在需要有效生产多糖或多糖复合物的生物技术应用中开辟新天地,包括制造糖缀合物疫苗。最后,在项目中获得的知识将是无价的,有助于教育科学界如何重新利用E。大肠杆菌细胞进行最佳的糖组装和生产。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
PglB function and glycosylation efficiency is temperature dependent when the pgl locus is integrated in the Escherichia coli chromosome.
  • DOI:
    10.1186/s12934-021-01728-7
  • 发表时间:
    2022-01-05
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Terra VS;Mauri M;Sannasiddappa TH;Smith AA;Stevens MP;Grant AJ;Wren BW;Cuccui J;Glycoengineering of Veterinary Vaccines consortium (GoVV)
  • 通讯作者:
    Glycoengineering of Veterinary Vaccines consortium (GoVV)
Development of an automated platform for the optimal production of glycoconjugate vaccines expressed in Escherichia coli.
  • DOI:
    10.1186/s12934-021-01588-1
  • 发表时间:
    2021-05-24
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Samaras JJ;Mauri M;Kay EJ;Wren BW;Micheletti M
  • 通讯作者:
    Micheletti M
Additional file 1 of Engineering a suite of E. coli strains for enhanced expression of bacterial polysaccharides and glycoconjugate vaccines
工程化一套大肠杆菌菌株以增强细菌多糖和糖复合物疫苗的表达的附加文件 1
  • DOI:
    10.6084/m9.figshare.19634695
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kay E
  • 通讯作者:
    Kay E
Engineering a suite of E. coli strains for enhanced expression of bacterial polysaccharides and glycoconjugate vaccines.
  • DOI:
    10.1186/s12934-022-01792-7
  • 发表时间:
    2022-04-21
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
  • 通讯作者:
Ferric Citrate Regulator FecR Is Translocated across the Bacterial Inner Membrane via a Unique Twin-Arginine Transport-Dependent Mechanism.
柠檬酸铁调节剂 FecR 通过独特的双精氨酸运输依赖机制跨细菌内膜转运。
  • DOI:
    10.1128/jb.00541-19
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Passmore IJ
  • 通讯作者:
    Passmore IJ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brendan Wren其他文献

Essential role of proline synthesis and the one-carbon metabolism pathways for systemic virulence of emStreptococcus pneumoniae/em
脯氨酸合成和一碳代谢途径对肺炎链球菌全身毒力的重要作用
  • DOI:
    10.1128/mbio.01758-24
  • 发表时间:
    2024-10-09
  • 期刊:
  • 影响因子:
    4.700
  • 作者:
    Elisa Ramos-Sevillano;Giuseppe Ercoli;Modupeh Betts;José Afonso Guerra-Assunção;Amy Iverson;Matthew Frank;Frederick Partridge;Stephanie W. Lo;Vitor E. Fernandes;Fauzy Nasher;Emma Wall;Brendan Wren;Stephen B. Gordon;Daniela M. Ferreira;Rob Heyderman;Jason Rosch;Jeremy S. Brown
  • 通讯作者:
    Jeremy S. Brown

Brendan Wren的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brendan Wren', 18)}}的其他基金

Development and application of an Advanced Glycan Production Platform
先进聚糖生产平台的开发与应用
  • 批准号:
    BB/W006146/1
  • 财政年份:
    2022
  • 资助金额:
    $ 47.71万
  • 项目类别:
    Research Grant
Development, production and testing of novel glycoconjugate pig vaccines
新型复合糖猪疫苗的开发、生产和测试
  • 批准号:
    BB/S004963/1
  • 财政年份:
    2019
  • 资助金额:
    $ 47.71万
  • 项目类别:
    Research Grant
Glycoengineering of Veterinary Vaccines
兽用疫苗的糖工程
  • 批准号:
    BB/N001591/1
  • 财政年份:
    2016
  • 资助金额:
    $ 47.71万
  • 项目类别:
    Research Grant
Development and testing of novel recombinant pnemococcal glyconjugate vaccines
新型重组肺炎球菌糖复合物疫苗的开发和测试
  • 批准号:
    MR/K012053/1
  • 财政年份:
    2013
  • 资助金额:
    $ 47.71万
  • 项目类别:
    Research Grant
The interactions between Clostridium difficile, intestinal microbiota and the host response in hospitalised patients
住院患者中艰难梭菌、肠道微生物群和宿主反应之间的相互作用
  • 批准号:
    MR/K000551/1
  • 财政年份:
    2012
  • 资助金额:
    $ 47.71万
  • 项目类别:
    Research Grant
Quorum sensing and lifestyle switching in Yersinia.
耶尔森氏菌的群体感应和生活方式转换。
  • 批准号:
    BB/I022902/1
  • 财政年份:
    2011
  • 资助金额:
    $ 47.71万
  • 项目类别:
    Research Grant
Genetic, structural and functional analyses of flagellar glycosylation in epidemic Clostridium difficile strains
流行性艰难梭菌菌株鞭毛糖基化的遗传、结构和功能分析
  • 批准号:
    G1000214/1
  • 财政年份:
    2011
  • 资助金额:
    $ 47.71万
  • 项目类别:
    Research Grant
A multivalent vaccine and single platform diagnostic for bacterial respiratory diseases of pigs
猪细菌性呼吸道疾病的多价疫苗和单一平台诊断
  • 批准号:
    BB/G019177/1
  • 财政年份:
    2010
  • 资助金额:
    $ 47.71万
  • 项目类别:
    Research Grant
A plethora of N-glycosylation pathways from the epsilon Proteobacteria - a resource for glycoprospecting and toolbox for glycoengineering
来自 epsilon Proteobacteria 的大量 N-糖基化途径 - 糖勘探的资源和糖工程的工具箱
  • 批准号:
    BB/H017437/1
  • 财政年份:
    2010
  • 资助金额:
    $ 47.71万
  • 项目类别:
    Research Grant
Bacterial oligosaccharyltransferase for glycoengineering and vaccine development
用于糖工程和疫苗开发的细菌寡糖转移酶
  • 批准号:
    BB/F009321/1
  • 财政年份:
    2008
  • 资助金额:
    $ 47.71万
  • 项目类别:
    Research Grant

相似国自然基金

E. coli O157:H7外膜蛋白质通过维持细胞膜稳定性的抗非热杀菌作用机制
  • 批准号:
    LR23C200002
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
利用E. coli融合表达体系及群体感应系统构建抗肿瘤工程菌株
  • 批准号:
    31700032
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
E. maxima Th1细胞因子抑制相关抗原的确定及其抑制作用机制的研究
  • 批准号:
    31672545
  • 批准年份:
    2016
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
格嵌入γ.e.度的研究
  • 批准号:
    19371042
  • 批准年份:
    1993
  • 资助金额:
    2.4 万元
  • 项目类别:
    面上项目

相似海外基金

Defining E. coli Diversity in Complex Samples: Methods for Surveillance & Transmission
定义复杂样品中的大肠杆菌多样性:监测方法
  • 批准号:
    MR/Y034449/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.71万
  • 项目类别:
    Research Grant
Mechanisms underlying diarrhea and gut inflammation mediated by Enterotoxigenic and Enteropathogenic E. coli
产肠毒素和致病性大肠杆菌介导的腹泻和肠道炎症的机制
  • 批准号:
    10674072
  • 财政年份:
    2023
  • 资助金额:
    $ 47.71万
  • 项目类别:
SBIR Phase I: Point-of-Care Diagnostic Tool for Identifying Extended Spectrum β-Lactamase E. Coli in Urinary Tract Infection
SBIR 第一阶段:用于识别尿路感染中的超广谱 β-内酰胺酶大肠杆菌的即时诊断工具
  • 批准号:
    2233653
  • 财政年份:
    2023
  • 资助金额:
    $ 47.71万
  • 项目类别:
    Standard Grant
Utilizing the power of synthetic biology and De Novo design for the overexpression and biochemical stabilization of KCNA6 or Kv1.6 potassium channels in the E. coli expression system
利用合成生物学和 De Novo 设计的力量,实现大肠杆菌表达系统中 KCNA6 或 Kv1.6 钾通道的过度表达和生化稳定
  • 批准号:
    10666856
  • 财政年份:
    2023
  • 资助金额:
    $ 47.71万
  • 项目类别:
Identification of coexistence relationships and phenotypic traits of virulence and resistance genes by large-scale E. coli genome analysis
通过大规模大肠杆菌基因组分析鉴定毒力和抗性基因的共存关系和表型特征
  • 批准号:
    23K07947
  • 财政年份:
    2023
  • 资助金额:
    $ 47.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular Pathogenesis of enterotoxigenic E. coli associated enteropathy
产肠毒素大肠杆菌相关性肠病的分子发病机制
  • 批准号:
    10656056
  • 财政年份:
    2023
  • 资助金额:
    $ 47.71万
  • 项目类别:
Characterization of the RRS: a new chromosomal structural element in E. coli
RRS 的表征:大肠杆菌中的一种新染色体结构元件
  • 批准号:
    10752809
  • 财政年份:
    2023
  • 资助金额:
    $ 47.71万
  • 项目类别:
Examining the mechanisms of epoxytigliane induced biofilm disruption in antibiotic resistant E coli
检查环氧替利亚烷诱导抗生素耐药性大肠杆菌生物膜破坏的机制
  • 批准号:
    BB/Y51276X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 47.71万
  • 项目类别:
    Training Grant
Microfluidic Impedance Biosensor for the Detection of E. coli in Waterways
用于检测水道中大肠杆菌的微流控阻抗生物传感器
  • 批准号:
    2882939
  • 财政年份:
    2023
  • 资助金额:
    $ 47.71万
  • 项目类别:
    Studentship
Defining the physiology of E. coli O157:H7 in cattle to develop phage-based interventions
定义牛体内大肠杆菌 O157:H7 的生理学以开发基于噬菌体的干预措施
  • 批准号:
    BB/X007022/1
  • 财政年份:
    2023
  • 资助金额:
    $ 47.71万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了