A Dragonfly multimodal fast imaging platform with SRRF-stream (Super-Resolution Radial Fluctuation) in the Liverpool Centre for Cell Imaging (CCI)

利物浦细胞成像中心 (CCI) 配备 SRRF-stream(超分辨率径向波动)的 Dragonfly 多模态快速成像平台

基本信息

  • 批准号:
    BB/R01390X/1
  • 负责人:
  • 金额:
    $ 36.98万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Individual cells in a plant or an animal are exposed to changes in their environment (biochemical signals, temperature, mechanical forces, light variations...). Cells have to interpret this information to adapt and respond appropriately. However, cells in an organism do not function in isolation, but are part of a complex 3D environment. The ability to experimentally recreate such environments and visualise individual cells in intact organs or 3D cultures is therefore essential to study biological processes. Imaging technologies are developing fast to study individual cells in a multicellular environment over-time. The need to visualise cellular processes from the nanometre (to elucidate what happens inside cells) to the millimetre (to elucidate how cells are organised in a tissue) scale in the least invasive manner and in real time has triggered the development of new microscopes and imaging technologies. We propose to purchase a microscope (Dragonfly, commercialised by Andor) which allows:1) Fast imaging of the biological processes in real-time, 2) High quality imaging of 3D samples, fixed or living, without the need of specific sample preparation,3) Imaging at very small scales, beyond the optical resolution of traditional microscopes, without damaging the sample due to high levels of light4) Imaging in the near-infrared spectrum of light, which is more commonly used for in vivo imaging. This will enable to integrate measurements done with the same fluorescent probes from cells to tissues in small animal models.5) Imaging in physiological conditions (controlled temperature, humidity, CO2, O2).Dragonfly is a versatile microscope, thanks to its 3 different modes of illumination and is an ideal instrument for a multi-user facility. We will install it in the Liverpool Centre for Cell Imaging (CCI), an open access and shared facility with ~100 registered users from academia and industry. The microscope will serve a breadth of science across the BBSRC remit. We briefly present below two research topics, which will benefit from it:1. A better understanding of photosynthesis in bacteria and algae to further engineer crops and boost their productivityPhotosynthesis is an essential biological process. During photosynthesis, phototrophs such as cyanobacteria, algae and higher plants convert solar light into chemical energy and generate oxygen necessary for animal life. A better understanding of photosynthesis is required to drive the future engineering of crop plants to increase yields. This is achieved by the elucidation of the organisation of the very efficient photosynthetic machinery in bacteria and in algae. Groups in Liverpool and York have developed molecular tools to visualise it in living bacteria or algae. They now need to be able to image the components very precisely (at nanometre range) and to measure their fast movements. They will use the Dragonfly for fast, high-throughput and high-resolution imaging of the necessary components.2. The unexpected role of oxygen sensing proteins in cell divisionOxygen is essential for life in multicellular organisms and animals have evolved mechanisms to cope with decreased oxygen concentration. Interestingly, oxygen-sensing proteins have recently been discovered, to also regulate essential processes during cell division. The molecular mechanisms that connect oxygen-sensing enzymes and cell division needs to be further investigated, using models of human tissues. Because cell division processes are fast and occur in defined areas of the cells, a microscope allowing high speed imaging and high resolution is required. Moreover, the pseudo-human tissues recreated in vitro for this study are fragile and require the gentle imaging conditions, with low light levels, to avoid light-induced damages. The Dragonfly will provide the required imaging conditions for this study and will enable the discovery of important mechanisms that control cell division in human tissues.
植物或动物中的单个细胞暴露在环境的变化中(生化信号、温度、机械力、光变化……)。细胞必须解释这些信息,以适应和做出适当的反应。然而,生物体中的细胞并不是孤立地发挥作用的,而是复杂3D环境的一部分。因此,在实验中重建这样的环境并在完整的器官或3D培养中可视化单个细胞的能力对于研究生物过程是必不可少的。随着时间的推移,成像技术正在快速发展,以研究多细胞环境中的单个细胞。需要以最小的侵入性和实时的方式将细胞过程可视化,从纳米级(以阐明细胞内部发生的事情)到毫米级(以阐明细胞在组织中是如何组织的),这引发了新显微镜和成像技术的发展。我们建议购买一台显微镜(蜻蜓,由Andor商业化),它可以:1)实时快速成像生物过程,2)高质量的3D样品成像,无论是固定的还是活的,不需要特定的样品准备,3)在非常小的范围内成像,超出传统显微镜的光学分辨率,而不会由于高强度的光而损坏样品4)在近红外光谱成像,这是更常用的体内成像。5)生理条件下的成像(控制温度、湿度、二氧化碳、氧气)。蜻蜓是一种多功能显微镜,具有3种不同的照明模式,是多用户设施的理想仪器。我们将把它安装在利物浦细胞成像中心(CCI),这是一个开放访问和共享的设施,有来自学术界和工业界的约100名注册用户。该显微镜将为BBSRC职权范围内的科学领域提供服务。我们简要介绍了以下两个将从中受益的研究课题:1.更好地了解细菌和藻类的光合作用,以进一步改造作物并提高它们的产量光合作用是一个必不可少的生物学过程。在光合作用过程中,蓝藻、藻类和高等植物等光养生物将太阳光转化为化学能,并产生动物生活所需的氧气。需要对光合作用有更好的了解,才能推动未来作物增产的工程。这是通过阐明细菌和藻类中非常有效的光合作用机制的组织来实现的。利物浦和约克的研究小组已经开发出分子工具,可以在活着的细菌或藻类中显示它。他们现在需要能够非常精确地成像组件(在纳米范围内),并测量它们的快速运动。他们将使用蜻蜓对必要的部件进行快速、高通量和高分辨率的成像。氧感应蛋白在细胞分裂中的意想不到的作用氧是多细胞生物体中生命所必需的,动物已经进化出应对氧浓度下降的机制。有趣的是,最近发现了氧感应蛋白,它还可以调节细胞分裂过程中的基本过程。连接氧气感受酶和细胞分裂的分子机制需要使用人体组织的模型来进一步研究。由于细胞分裂过程很快,而且发生在细胞的特定区域,因此需要一台能够高速成像和高分辨率的显微镜。此外,为这项研究在体外重建的拟人组织是脆弱的,需要温和的成像条件,在低光照水平下,以避免光诱导的损害。蜻蜓将为这项研究提供所需的成像条件,并将使发现控制人类组织细胞分裂的重要机制成为可能。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synthetic engineering of a new biocatalyst encapsulating [NiFe]-hydrogenases for enhanced hydrogen production.
Multimodal cell tracking from systemic administration to tumour growth by combining gold nanorods and reporter genes.
  • DOI:
    10.7554/elife.33140
  • 发表时间:
    2018-06-27
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Comenge J;Sharkey J;Fragueiro O;Wilm B;Brust M;Murray P;Levy R;Plagge A
  • 通讯作者:
    Plagge A
Roles of RbcX in Carboxysome Biosynthesis in the Cyanobacterium Synechococcus elongatus PCC7942.
  • DOI:
    10.1104/pp.18.01217
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Huang F;Vasieva O;Sun Y;Faulkner M;Dykes GF;Zhao Z;Liu LN
  • 通讯作者:
    Liu LN
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Violaine See其他文献

Violaine See的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Violaine See', 18)}}的其他基金

Elyra7 with Lattice SIM microscope in the Liverpool Centre for Cell Imaging (CCI), for fast imaging of living samples beyond the limit of diffraction
利物浦细胞成像中心 (CCI) 配备 Lattice SIM 显微镜的 Elyra7,用于超越衍射极限的活样品快速成像
  • 批准号:
    BB/T017813/1
  • 财政年份:
    2020
  • 资助金额:
    $ 36.98万
  • 项目类别:
    Research Grant
Fluorescence Light Sheet Microscopy for Live 3D and 4D imaging
用于实时 3D 和 4D 成像的荧光光片显微镜
  • 批准号:
    BB/L014947/1
  • 财政年份:
    2014
  • 资助金额:
    $ 36.98万
  • 项目类别:
    Research Grant

相似海外基金

Data Management Core
数据管理核心
  • 批准号:
    10682165
  • 财政年份:
    2023
  • 资助金额:
    $ 36.98万
  • 项目类别:
Fast-Track Multimodal monitoring for neonatal neurocritical care
新生儿神经重症监护的快速多模式监测
  • 批准号:
    10601201
  • 财政年份:
    2023
  • 资助金额:
    $ 36.98万
  • 项目类别:
Fast and Robust Deep Learning for Medical imaging: Segmentation and Registration methods invariant to contrast and resolution
快速、鲁棒的医学成像深度学习:对比度和分辨率不变的分割和配准方法
  • 批准号:
    10733935
  • 财政年份:
    2023
  • 资助金额:
    $ 36.98万
  • 项目类别:
MS Falls InsightTrack (MS FIT): A personal health library to reduce falls in patients with MS
MS Falls InsightTrack (MS FIT):减少多发性硬化症患者跌倒的个人健康图书馆
  • 批准号:
    10330940
  • 财政年份:
    2021
  • 资助金额:
    $ 36.98万
  • 项目类别:
MS Falls InsightTrack (MS FIT): A personal health library to reduce falls in patients with MS
MS Falls InsightTrack (MS FIT):减少多发性硬化症患者跌倒的个人健康图书馆
  • 批准号:
    10669143
  • 财政年份:
    2021
  • 资助金额:
    $ 36.98万
  • 项目类别:
MS Falls InsightTrack (MS FIT): A personal health library to reduce falls in patients with MS
MS Falls InsightTrack (MS FIT):减少多发性硬化症患者跌倒的个人健康图书馆
  • 批准号:
    10478184
  • 财政年份:
    2021
  • 资助金额:
    $ 36.98万
  • 项目类别:
Light engineering module for fast high-resolution whole-cell imaging
用于快速高分辨率全细胞成像的光工程模块
  • 批准号:
    9910043
  • 财政年份:
    2020
  • 资助金额:
    $ 36.98万
  • 项目类别:
Cognitive Control in Children of SUD Parents: A Longitudinal Multimodal MRI Study
SUD 父母子女的认知控制:纵向多模态 MRI 研究
  • 批准号:
    10168168
  • 财政年份:
    2020
  • 资助金额:
    $ 36.98万
  • 项目类别:
A Fast Automated Classifier for the Characterization of Intratumor Heterogeneity using Quantitative Physical Features from Multimodal Imaging
利用多模态成像的定量物理特征表征肿瘤内异质性的快速自动分类器
  • 批准号:
    543075-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 36.98万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Multimodal testing for a fast subcortical route for salient visual stimuli
针对显着视觉刺激的快速皮层下路径的多模态测试
  • 批准号:
    DP180104128
  • 财政年份:
    2018
  • 资助金额:
    $ 36.98万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了