Elyra7 with Lattice SIM microscope in the Liverpool Centre for Cell Imaging (CCI), for fast imaging of living samples beyond the limit of diffraction

利物浦细胞成像中心 (CCI) 配备 Lattice SIM 显微镜的 Elyra7,用于超越衍射极限的活样品快速成像

基本信息

  • 批准号:
    BB/T017813/1
  • 负责人:
  • 金额:
    $ 57.9万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Bacteria or individual cells in a plant or an animal are exposed to changes in their environment (biochemical signals, temperature, mechanical forces, light variations...), and have to interpret this information to adapt and respond appropriately. However, cells in an organism do not function in isolation - they are part of a complex 3D environment. The ability to experimentally recreate such environments and visualise individual cells, and even subcellular organisation in 3D is therefore essential to study biological processes. Imaging technologies are developing fast to study individual cells in a multicellular environment and over-time. The need to visualise cellular processes from the nanometre (to elucidate what happens inside cells) to the millimetre (to elucidate how cells are organised in a tissue) scale in the least invasive manner and in real time has triggered the development of new microscopes and imaging technologies. We propose to purchase a newly commercialised microscope (Elyra 7, from Zeiss), which allows:1) Imaging at very small scales (nanometre), beyond the optical resolution of traditional microscopes, without damaging the sample because of high levels of light;2) Fast imaging of the biological processes in real-time;3) High quality imaging of 3D samples, fixed or living, without the need of specific or complex sample preparation;4) Imaging in physiological conditions (controlled temperature, humidity, CO2, O2).The Elyra 7 is a versatile microscope, with multiple capabilities enabling very fast imaging of fine structures in 3D. We will install it in the Liverpool Centre for Cell Imaging (CCI), an open access and shared facility with ~100 registered users /year, from academia and industry. The microscope will serve a breadth of science across the BBSRC remit. For illustration, we here briefly present below two research topics, which will benefit from it:1. A better understanding of photosynthesis in bacteria to further engineer crops and boost their productivityPhotosynthesis is an essential biological process. During photosynthesis, phototrophs such as cyanobacteria, algae and higher plants convert solar light into chemical energy and generate oxygen necessary for animal life. A better understanding of photosynthesis is required to drive the future engineering of crop plants to increase yields. This is achieved by the elucidation of the organisation of the very efficient photosynthetic machinery in bacteria and in algae. Groups in Liverpool and York have developed molecular tools to visualise it in living bacteria or algae. They now need to be able to image the components very precisely (at nanometre range) and to measure their fast movements. They will use the Elyra 7 for fast, and high-resolution imaging of the necessary components.2. Imaging the processes of ageing in neuronsAgeing leads to alterations in the nervous system, which to various extent impair its functions such as capacity to learn and memory. We need to elucidate the mechanisms causing the alterations in neurons, and determine if they are irreversible or not. We will investigate how ageing affects the organisation of neuronal architecture, the intracellular organelle dynamics and the intracellular protein degradation to understand their contribution to subcellular ageing. We will require very precise imaging to detect fine changes in sub-cellular structures during ageing. We use fruitfly brains as model system, which are organised in 3D, so we will need to not only see the details, but to see them in the entire brain and in real-time. The Elyra 7 with Lattice SIM microscope will allow us to capture subcellular detail and live dynamics in the complexity of the whole brain and with reduced light-induced toxicity, all being necessary to progress our work on the cell biology of neuronal ageing.
细菌或植物或动物中的单个细胞暴露在环境的变化中(生化信号、温度、机械力、光变化……),并必须解释这些信息以适应和做出适当的反应。然而,生物体中的细胞并不是孤立地发挥作用的--它们是复杂3D环境的一部分。因此,通过实验重建这样的环境并可视化单个细胞,甚至3D亚细胞组织的能力,对于研究生物过程是必不可少的。成像技术发展迅速,可以在多细胞环境和时间上研究单个细胞。需要以最小的侵入性和实时的方式将细胞过程可视化,从纳米级(以阐明细胞内部发生的事情)到毫米级(以阐明细胞在组织中是如何组织的),这引发了新显微镜和成像技术的发展。我们建议购买一种新的商业化显微镜(Elyra 7,来自蔡司),它允许:1)在非常小的尺度(纳米)下成像,超出传统显微镜的光学分辨率,而不会因为高光强而损坏样品;2)生物过程的实时快速成像;3)固定或活的3D样品的高质量成像,不需要特定或复杂的样品准备;4)在生理条件下(受控的温度、湿度、二氧化碳、O2)成像。Elyra 7是一种多功能显微镜,具有多种功能,能够非常快速地在3D中成像精细结构。我们将把它安装在利物浦细胞成像中心(CCI),这是一个开放访问和共享的设施,每年约有100名来自学术界和工业界的注册用户。该显微镜将为BBSRC职权范围内的科学领域提供服务。作为说明,我们在这里简要介绍以下两个将从中受益的研究课题:1.更好地了解细菌中的光合作用,以进一步改造作物并提高其产量光合作用是一个必不可少的生物学过程。在光合作用过程中,蓝藻、藻类和高等植物等光养生物将太阳光转化为化学能,并产生动物生活所需的氧气。需要对光合作用有更好的了解,才能推动未来作物增产的工程。这是通过阐明细菌和藻类中非常有效的光合作用机制的组织来实现的。利物浦和约克的研究小组已经开发出分子工具,可以在活着的细菌或藻类中显示它。他们现在需要能够非常精确地成像组件(在纳米范围内),并测量它们的快速运动。他们将使用Elyra 7对必要的组件进行快速、高分辨率的成像。成像神经元的衰老过程衰老会导致神经系统的变化,这会在不同程度上损害其学习和记忆能力等功能。我们需要阐明导致神经元变化的机制,并确定它们是否不可逆转。我们将研究衰老如何影响神经元结构的组织、细胞内细胞器的动力学和细胞内蛋白质的降解,以了解它们对亚细胞衰老的贡献。我们将需要非常精确的成像来检测衰老过程中亚细胞结构的细微变化。我们使用果蝇大脑作为模型系统,这是以3D形式组织的,因此我们不仅需要看到细节,还需要在整个大脑中实时看到它们。Elyra 7配备Lattice SIM显微镜将使我们能够在整个大脑的复杂性中捕捉亚细胞细节和活的动态,并减少光诱导的毒性,所有这些都是推进我们在神经元老化的细胞生物学方面的工作所必需的。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Novel roles of RTN4 and CLIMP-63 in regulating mitochondrial structure, bioenergetics and apoptosis.
  • DOI:
    10.1038/s41419-022-04869-8
  • 发表时间:
    2022-05-04
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Carter, Rachel J.;Milani, Mateus;Beckett, Alison J.;Liu, Shiyu;Prior, Ian A.;Cohen, Gerald M.;Varadarajan, Shankar
  • 通讯作者:
    Varadarajan, Shankar
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Violaine See其他文献

Violaine See的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Violaine See', 18)}}的其他基金

A Dragonfly multimodal fast imaging platform with SRRF-stream (Super-Resolution Radial Fluctuation) in the Liverpool Centre for Cell Imaging (CCI)
利物浦细胞成像中心 (CCI) 配备 SRRF-stream(超分辨率径向波动)的 Dragonfly 多模态快速成像平台
  • 批准号:
    BB/R01390X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 57.9万
  • 项目类别:
    Research Grant
Fluorescence Light Sheet Microscopy for Live 3D and 4D imaging
用于实时 3D 和 4D 成像的荧光光片显微镜
  • 批准号:
    BB/L014947/1
  • 财政年份:
    2014
  • 资助金额:
    $ 57.9万
  • 项目类别:
    Research Grant

相似国自然基金

Lattice结构IIR数字滤波器设计的序贯部分优化算法
  • 批准号:
    62001261
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
皮米级发射度的衍射极限储存环lattice结构及动力学研究
  • 批准号:
    11875259
  • 批准年份:
    2018
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
基于结构化Lattice编码的CSMA(载波侦听多址接入)多包传输技术研究
  • 批准号:
    61571373
  • 批准年份:
    2015
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于Lattice Boltzmann方法的相间传质过程界面对流模拟和实验研究
  • 批准号:
    21176171
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于Lattice的汉语语音主题分类方法研究
  • 批准号:
    60702053
  • 批准年份:
    2007
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
基于Lattice滤波器的故障诊断方法研究
  • 批准号:
    69574015
  • 批准年份:
    1995
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目

相似海外基金

Numerical simulations of lattice field theory
晶格场论的数值模拟
  • 批准号:
    2902259
  • 财政年份:
    2024
  • 资助金额:
    $ 57.9万
  • 项目类别:
    Studentship
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
  • 批准号:
    2338683
  • 财政年份:
    2024
  • 资助金额:
    $ 57.9万
  • 项目类别:
    Continuing Grant
Conference: Solvable Lattice Models, Number Theory and Combinatorics
会议:可解格子模型、数论和组合学
  • 批准号:
    2401464
  • 财政年份:
    2024
  • 资助金额:
    $ 57.9万
  • 项目类别:
    Standard Grant
Unravelling the neutron lifetime puzzle with lattice quantum chromodynamics
用晶格量子色动力学解开中子寿命之谜
  • 批准号:
    DP240102839
  • 财政年份:
    2024
  • 资助金额:
    $ 57.9万
  • 项目类别:
    Discovery Projects
Integrating Hamiltonian Effective Field Theory with Lattice QCD and Experimental Results to study Heavy Exotic Hadron Spectroscopy
哈密​​顿有效场论与晶格 QCD 和实验结果相结合,研究重奇异强子谱
  • 批准号:
    24K17055
  • 财政年份:
    2024
  • 资助金额:
    $ 57.9万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Non-perturbative studies of electron-lattice interactions in quantum materials
量子材料中电子晶格相互作用的非微扰研究
  • 批准号:
    2401388
  • 财政年份:
    2024
  • 资助金额:
    $ 57.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Elements: Lattice QCD software for nuclear physics on heterogeneous architectures
合作研究:Elements:用于异构架构核物理的 Lattice QCD 软件
  • 批准号:
    2311430
  • 财政年份:
    2023
  • 资助金额:
    $ 57.9万
  • 项目类别:
    Standard Grant
Development of tensor renormalization group for lattice field theories rich in internal degrees of freedom
丰富内部自由度晶格场论张量重整化群的发展
  • 批准号:
    23K13096
  • 财政年份:
    2023
  • 资助金额:
    $ 57.9万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Design of quantum phases with long-periods by structural defection on a lattice
通过晶格结构缺陷设计长周期量子相
  • 批准号:
    23KJ0801
  • 财政年份:
    2023
  • 资助金额:
    $ 57.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
ERI: Solubility-Boosting Effect of Lattice Impurities in Anisotropic Crystals
ERI:各向异性晶体中晶格杂质的增溶作用
  • 批准号:
    2301629
  • 财政年份:
    2023
  • 资助金额:
    $ 57.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了