Elucidating the neurophysiological basis of time perception

阐明时间感知的神经生理学基础

基本信息

  • 批准号:
    BB/R01583X/1
  • 负责人:
  • 金额:
    $ 43.6万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Our ability to accurately perceive time changes from one moment to the next. These variations contribute to moment-to-moment fluctuations in our experience of the world and other psychological functions such as coordinating our movements in response to environmental cues. Variations in our perception of time are thought to be caused in part by fluctuations in a specific brain chemical, dopamine. Dopamine is believed to activate brain regions involved in matching time intervals against other intervals we hold in memory and thereby affecting how we perceive the passage of time. When and how dopamine influences our experience of time is poorly understood because until very recently it was impossible to measure dopamine in the human brain over short timescales. A newly-developed method, fast-scan cyclic voltammetry (FSCV), allows us to accurately measure dopamine in humans and thus offers an excellent opportunity to study how dopamine contributes to variations in human time perception for the first time. Another method, electroencephalography (EEG), allows us to record a particular brain rhythm (beta oscillations) that is closely associated with dopamine and can thereby provide a complementary way to study the role dopamine plays in affecting different phases of time perception. The proposed research aims to use FSCV and EEG to investigate whether moment-to-moment variations in time perception can be predicted from participants' brain states. FSCV will be used to measure dopamine concentrations in striatum, a brain region previously implicated in time perception, in Parkinson's patients whilst they complete time perception tasks. This will allow us to determine whether dopamine concentrations can be used to predict how participants perceive time. Further analyses will investigate whether dopamine plays a similar role in time perception when we're storing an interval in memory as when we're trying to remember an interval and whether dopamine plays a similar role in both time perception and other cognitive functions such as attention and working memory. In a second, complementary set of studies, an advanced analysis technique, multivariate pattern analysis, will be applied to EEG data in healthy adults whilst they complete the same time perception tasks. This method will allow us to determine approximately when in time participants' experiences of time can be predicted and the role of specific brain rhythms. This approach will also help to clarify whether similar brain mechanisms support different phases of time perception and both time perception and other cognitive functions.This project has the potential to significantly advance current understanding of how fluctuations in brain states influence our subjective experience of time. This research will help to update contemporary theories of timing including when and how brain states shape our perception of time, how these states contribute to different phases of time perception, and how time perception relates to other basic psychological functions. Our perception of time influences how we perform a variety of actions such as coordinating our movements and predicting the trajectory of a ball so that we are able to catch it. Superior understanding of the brain mechanisms that contribute to variability in time perception may thus help to understand the sources of variability in human performance more generally. Individuals with different disorders such as Parkinson's disease and schizophrenia experience pronounced alterations in their perception. These time distortions are typically characterized by increased variability in the perception of time. By helping to strengthen current understanding of how variability in brain states contributes to fluctuations in our time perception, this project may also help to provide a methodological and theoretical framework for studying these distortions in a more refined manner including how they relate to other clinical symptoms.
我们准确感知时间的能力从一个时刻到下一个时刻都在变化。这些变化导致了我们对世界的体验和其他心理功能的瞬间波动,例如协调我们对环境线索的反应。我们对时间的感知的变化被认为部分是由一种特定的大脑化学物质多巴胺的波动引起的。多巴胺被认为可以激活大脑中负责将时间间隔与我们记忆中的其他时间间隔相匹配的区域,从而影响我们对时间流逝的感知。人们对多巴胺何时以及如何影响我们的时间体验知之甚少,因为直到最近才能在短时间内测量人脑中的多巴胺。一种新开发的方法,快速扫描循环伏安法(FSCV),使我们能够准确地测量人类的多巴胺,从而提供了一个很好的机会来研究多巴胺如何有助于人类时间感知的变化。另一种方法,脑电图(EEG),允许我们记录与多巴胺密切相关的特定脑节律(β振荡),从而可以提供一种补充方法来研究多巴胺在影响时间感知的不同阶段中所起的作用。这项研究的目的是使用FSCV和EEG来研究是否可以从参与者的大脑状态预测时间感知的时刻变化。FSCV将用于测量帕金森病患者完成时间感知任务时纹状体中的多巴胺浓度,纹状体是先前与时间感知有关的大脑区域。这将使我们能够确定多巴胺浓度是否可以用来预测参与者如何感知时间。进一步的分析将研究当我们在记忆中存储时间间隔时,多巴胺是否在时间感知中扮演类似的角色,当我们试图记住一个时间间隔时,多巴胺是否在时间感知和其他认知功能中扮演类似的角色,如注意力和工作记忆。在第二,互补的一组研究,先进的分析技术,多元模式分析,将被应用到健康成年人的EEG数据,而他们完成相同的时间感知任务。这种方法将使我们能够大致确定何时可以预测参与者的时间体验以及特定脑节律的作用。这一方法也将有助于阐明是否相似的大脑机制支持不同阶段的时间知觉,以及时间知觉和其他认知功能。这一项目有可能大大推进目前对大脑状态波动如何影响我们的主观时间体验的理解。这项研究将有助于更新当代计时理论,包括大脑状态何时以及如何塑造我们的时间感知,这些状态如何有助于时间感知的不同阶段,以及时间感知如何与其他基本心理功能相关。我们对时间的感知影响着我们如何执行各种动作,比如协调我们的动作,预测球的轨迹,以便我们能够抓住它。因此,对时间感知可变性的大脑机制的上级理解可能有助于更普遍地理解人类表现的可变性来源。患有不同疾病的个体,如帕金森病和精神分裂症,在他们的感知中经历了明显的改变。这些时间扭曲的典型特征是时间感知的可变性增加。通过帮助加强目前对大脑状态变化如何影响我们时间感知波动的理解,该项目还有助于提供一个方法和理论框架,以更精确的方式研究这些扭曲,包括它们如何与其他临床症状相关。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The temporal context in bayesian models of interval timing: Recent advances and future directions.
  • DOI:
    10.1037/bne0000513
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Sadibolova, Renata;Terhune, Devin B.
  • 通讯作者:
    Terhune, Devin B.
Manipulations of Libet clock parameters affect intention timing awareness
Libet时钟参数的操纵影响意图计时意识
  • DOI:
    10.21203/rs.3.rs-1810968/v1
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ivanof B
  • 通讯作者:
    Ivanof B
Using adaptive psychophysics to identify the neural network reset time in subsecond interval timing.
  • DOI:
    10.1007/s00221-021-06227-0
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Sadibolova R;Sun S;Terhune DB
  • 通讯作者:
    Terhune DB
A proxy measure of striatal dopamine predicts individual differences in temporal precision.
  • DOI:
    10.3758/s13423-022-02077-1
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Sadibolova, Renata;Monaldi, Luna;Terhune, Devin B.
  • 通讯作者:
    Terhune, Devin B.
Manipulations of Libet clock parameters affect intention timing awareness.
  • DOI:
    10.1038/s41598-022-23513-1
  • 发表时间:
    2022-11-24
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Devin Terhune其他文献

P278. Comorbid Depression and Impulse Control Disorder are Associated With Time Perception Deficits in Parkinson’s Disease Patients
  • DOI:
    10.1016/j.biopsych.2022.02.514
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Emily DiMarco;Renata Sadibolova;Rachel Jones;Angela Jiang;Brittany Liebenow;Ihtsham Haq;Mustafa Siddiqui;Devin Terhune;Kenneth Kishida
  • 通讯作者:
    Kenneth Kishida

Devin Terhune的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

The neurophysiological basis of interindividual variability (IIV) in ADHD
ADHD 个体差异(IIV)的神经生理学基础
  • 批准号:
    10660737
  • 财政年份:
    2023
  • 资助金额:
    $ 43.6万
  • 项目类别:
Investigating the neurophysiological basis of circuit-specific laminar rs-fMRI
研究电路特异性层流 rs-fMRI 的神经生理学基础
  • 批准号:
    10518479
  • 财政年份:
    2022
  • 资助金额:
    $ 43.6万
  • 项目类别:
Neurophysiological Basis for Functional Connectivity Changes in Early Alzheimer’s Disease
早期阿尔茨海默病功能连接变化的神经生理学基础
  • 批准号:
    10534529
  • 财政年份:
    2022
  • 资助金额:
    $ 43.6万
  • 项目类别:
Neurophysiological Basis for Functional Connectivity Changes in Early Alzheimer’s Disease
早期阿尔茨海默病功能连接变化的神经生理学基础
  • 批准号:
    10710379
  • 财政年份:
    2022
  • 资助金额:
    $ 43.6万
  • 项目类别:
Collaborative Research: EAGER: Neurophysiological basis of the light-dependent magnetic compass in birds
合作研究:EAGER:鸟类光依赖性磁罗盘的神经生理学基础
  • 批准号:
    1947163
  • 财政年份:
    2020
  • 资助金额:
    $ 43.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: EAGER: Neurophysiological Basis of the Light-Dependent Magnetic Compass in Birds
合作研究:EAGER:鸟类光依赖性磁罗盘的神经生理学基础
  • 批准号:
    1947176
  • 财政年份:
    2020
  • 资助金额:
    $ 43.6万
  • 项目类别:
    Continuing Grant
The Neurophysiological Basis of Gender Stereotypes During an Audiovisual Match Paradigm in Adults
成人视听匹配范式中性别刻板印象的神经生理学基础
  • 批准号:
    539118-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 43.6万
  • 项目类别:
    University Undergraduate Student Research Awards
The Neurophysiological Basis of Ammonia Toxicity and Tolerance in Fishes
鱼类氨毒性和耐受性的神经生理学基础
  • 批准号:
    RGPIN-2015-04248
  • 财政年份:
    2019
  • 资助金额:
    $ 43.6万
  • 项目类别:
    Discovery Grants Program - Individual
The Neurophysiological Basis of Ammonia Toxicity and Tolerance in Fishes
鱼类氨毒性和耐受性的神经生理学基础
  • 批准号:
    RGPIN-2015-04248
  • 财政年份:
    2018
  • 资助金额:
    $ 43.6万
  • 项目类别:
    Discovery Grants Program - Individual
Neurophysiological basis of experience influence in observational fear
经验影响观察恐惧的神经生理学基础
  • 批准号:
    10091989
  • 财政年份:
    2017
  • 资助金额:
    $ 43.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了