Constructing catalytically proficient enzymes from de novo designed proteins
从头设计的蛋白质构建催化效率高的酶
基本信息
- 批准号:BB/R016445/1
- 负责人:
- 金额:$ 64.97万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Enzymes are fundamentally important biological molecules that perform the bulk of the chemical reactions in all living organisms. The are themselves proteins, made up of chains of amino acids, though what differentiates them from proteins is their ability to massively increase the rate of chemical reactions. These reactions power cellular life and are involved in a great number of essential processes that give cells their chemical and physical characteristics. Many enzymes perform chemical reactions which have substantial commercial or medical value, as the products of the transformations may be drugs, fuels or other useful substances or materials. It is often the case that for such important or useful reactions, there are no manmade substances available to catalyse the specific chemical transformations with the same degree of precision or efficiency as enzymes. There are also many chemical transformations for which no enzyme has yet been discovered. Therefore, there is a huge interest in building tailor-made enzymes capable of performing selected chemical reactions. While we have gained an incredibly powerful understanding of natural enzymatic catalysis over the past 100 years, there remains a shortfall in the capabilities of artificial, designed enzymes and those found in nature. We believe that this due, in part, to the prevalent use of naturally evolved proteins as the starting points for creating artificial enzymes. These natural proteins may be fragile, difficult and expensive to purify, inactive out of their cellular environment, chemically sensitive to organic molecules and solvents, and, most significantly, they invariably bring an evolutionary complexity with them that can hinder modification by the enzyme designer. We believe that this evolutionary baggage is not a necessary feature of proteins and enzymes and that in certain cases, it might be preferable to work with proteins untouched by natural selection. Our simple proteins, called maquettes, are small robust protein scaffolds that contain no natural protein sequences, and are therefore free from any complexity imposed by evolution. Typically, we design these maquettes to include a non-protein molecule that imparts its own reactivity onto the scaffold. The heme molecule is a particularly versatile molecule that we include in our designs, and it is present in a plethora of natural enzymes, many of which catalyse exceptionally challenging chemical reactions.With our most recent work, we have used an elementary design process to develop a heme-containing maquette into an active artificial enzyme that functions as well as many natural enzymes for the removal of electrons - oxidation - from a broad range of substrates. It can even perform the detoxification of a common pollutant with higher efficiency than a natural enzyme that has evolved specifically for this purpose. The artificial enzyme is relatively insensitive towards temperature and the presence of organic solvents, and is an excellent starting point for the design of new, cheap and highly efficient biocatalysts that have huge potential in industrial biotechnology. The work we propose here aims to exploit this recent success and develop a diverse range of maquettes that will act as robust artificial enzymes capable of catalysing several commercially valuable and challenging reactions. Informed by the structures and our functional understanding of natural enzymes, we will use powerful new computational methods alongside iterative, experimental approaches to achieve this. Crucially, these include reactions not observed in nature, whereby the resulting products contain unusual and highly strained ring structures, and have significant biological activities (e.g. drugs, insecticides). Since the maquettes are fully and functionally assembled in bacteria, we can also employ powerful, high throughput laboratory evolution strategies to improve catalytically activity in a semi random manner.
酶是极其重要的生物分子,在所有生物体中执行大部分化学反应。它们本身就是蛋白质,由氨基酸链组成,但它们与蛋白质的区别在于它们能够大幅提高化学反应速率。这些反应为细胞生命提供动力,并参与大量赋予细胞化学和物理特性的基本过程。许多酶进行具有重大商业或医学价值的化学反应,因为转化的产物可能是药物、燃料或其他有用的物质或材料。通常的情况是,对于如此重要或有用的反应,没有人造物质可以以与酶相同的精度或效率来催化特定的化学转化。还有许多化学转化尚未发现酶。因此,人们对构建能够执行选定化学反应的定制酶产生了巨大的兴趣。尽管过去 100 年来我们对天然酶催化有了极其深入的了解,但人工设计的酶和自然界中发现的酶的能力仍然存在不足。我们认为,这在一定程度上是由于普遍使用自然进化的蛋白质作为制造人工酶的起点。这些天然蛋白质可能是脆弱的、难以纯化且昂贵的、在细胞环境之外无活性、对有机分子和溶剂化学敏感,并且最重要的是,它们总是带来进化复杂性,这可能阻碍酶设计者的修饰。我们认为,这种进化包袱并不是蛋白质和酶的必要特征,在某些情况下,最好使用未受自然选择影响的蛋白质。我们的简单蛋白质(称为模型)是坚固的小蛋白质支架,不包含天然蛋白质序列,因此不受进化带来的任何复杂性的影响。通常,我们设计这些模型以包含非蛋白质分子,该分子将其自身的反应性传递到支架上。血红素分子是我们设计中包含的一种特别通用的分子,它存在于大量天然酶中,其中许多酶能够催化极具挑战性的化学反应。在我们最近的工作中,我们使用基本设计过程将含血红素的模型开发成一种活性人工酶,其功能与许多天然酶一样,可从广泛的范围内去除电子(氧化) 的基材。它甚至可以比专门为此目的而进化的天然酶更高效地对常见污染物进行解毒。人工酶对温度和有机溶剂的存在相对不敏感,是设计新型、廉价和高效生物催化剂的绝佳起点,在工业生物技术中具有巨大潜力。我们在此提出的工作旨在利用最近的成功并开发各种模型,这些模型将作为强大的人工酶,能够催化几种具有商业价值和挑战性的反应。根据对天然酶的结构和功能的理解,我们将使用强大的新计算方法以及迭代实验方法来实现这一目标。至关重要的是,这些包括在自然界中未观察到的反应,由此产生的产物包含不寻常且高度紧张的环结构,并具有显着的生物活性(例如药物、杀虫剂)。由于模型在细菌中完全且功能性地组装,我们还可以采用强大的、高通量的实验室进化策略以半随机的方式提高催化活性。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An expandable, modular de novo protein platform for precision redox engineering.
- DOI:10.1073/pnas.2306046120
- 发表时间:2023-08
- 期刊:
- 影响因子:11.1
- 作者:Hutchins, George H.;Noble, Claire E. M.;Bunzel, H. Adrian;Williams, Christopher;Dubiel, Paulina;Yadav, Sathish K. N.;Molinaro, Paul M.;Barringer, Rob;Blackburn, Hector;Hardy, Benjamin J.;Parnell, Alice E.;Landau, Charles;Race, Paul R.;Oliver, Thomas A. A.;Koder, Ronald L.;Crump, Matthew P.;Schaffitzel, Christiane;Oliveira, A. Sofia F.;Mulholland, Adrian J.;Anderson, J. L. Ross
- 通讯作者:Anderson, J. L. Ross
Rigidifying a De Novo Enzyme Increases Activity and Induces a Negative Activation Heat Capacity.
- DOI:10.1021/acscatal.1c01776
- 发表时间:2021-09-17
- 期刊:
- 影响因子:12.9
- 作者:Hindson SA;Bunzel HA;Frank B;Svistunenko DA;Williams C;van der Kamp MW;Mulholland AJ;Pudney CR;Anderson JLR
- 通讯作者:Anderson JLR
Antibodies generated in vitro and in vivo elucidate design of a thermostable ADDomer COVID-19 nasal nanoparticle vaccine
- DOI:10.1101/2023.03.17.533092
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Dora Buzas;H. Bunzel;Oskar Staufer;E. Milodowski;Grace Edmonds;beatriz Vidana Matteo;C. Schaffitzel;Sathish K. N. Yadav;K. Gupta;Charlotte Fletcher;M. Williamson;Alexandra Harrison;Ufuk Borucu;Julien Capin;Ore Francis;Georgia Balchin;Sophie Hall;Mirella Vivoli Vega;F. Durbesson;R. Vincentelli;Joe Roe;L. Wooldridge;R. Burt;Ross J L Anderson;A. Mulholland;J. Hare;Mick Bailey;A. Davidson;A. Finn;David Morgan;Jamie F S Mann;Joachim P. Spatz;F. Garzoni;J. Bufton;I. Berger
- 通讯作者:Dora Buzas;H. Bunzel;Oskar Staufer;E. Milodowski;Grace Edmonds;beatriz Vidana Matteo;C. Schaffitzel;Sathish K. N. Yadav;K. Gupta;Charlotte Fletcher;M. Williamson;Alexandra Harrison;Ufuk Borucu;Julien Capin;Ore Francis;Georgia Balchin;Sophie Hall;Mirella Vivoli Vega;F. Durbesson;R. Vincentelli;Joe Roe;L. Wooldridge;R. Burt;Ross J L Anderson;A. Mulholland;J. Hare;Mick Bailey;A. Davidson;A. Finn;David Morgan;Jamie F S Mann;Joachim P. Spatz;F. Garzoni;J. Bufton;I. Berger
Expression and In Vivo Loading of De Novo Proteins with Tetrapyrrole Cofactors.
使用四吡咯辅因子表达和体内装载 De Novo 蛋白质。
- DOI:10.1007/978-1-0716-1826-4_8
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Curnow P
- 通讯作者:Curnow P
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ross Anderson其他文献
Blackbox Attacks on Reinforcement Learning Agents Using Approximated Temporal Information
使用近似时间信息对强化学习代理进行黑盒攻击
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yiren Zhao;Ilia Shumailov;Han Cui;Xitong Gao;R. Mullins;Ross Anderson - 通讯作者:
Ross Anderson
The Unlucky Voyage: Batavia’s (1629) Landscape of Survival on the Houtman Abrolhos Islands in Western Australia
不幸的航行:巴达维亚(1629)西澳大利亚霍特曼阿布罗霍斯群岛的生存景观
- DOI:
10.1007/s41636-023-00396-1 - 发表时间:
2023 - 期刊:
- 影响因子:0.8
- 作者:
A. Paterson;Jeremy Green;Wendy van Duivenvoorde;D. Franklin;Ambika Flavel;L. Smits;J. Shragge;M. Manders;C. Souter;D. Shefi;Ross Anderson;T. Hoskin;Nader Issa;Mike Nash - 通讯作者:
Mike Nash
Experimental investigation of methane hydrate growth and dissociation hysteresis in narrow pores
窄孔隙中甲烷水合物生长和解离滞后的实验研究
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Ross Anderson;M. Cueto;B. T. Kalorazi - 通讯作者:
B. T. Kalorazi
Hextend and 7.5% hypertonic saline with Dextran are equivalent to Lactated Ringer's in a swine model of initial resuscitation of uncontrolled hemorrhagic shock.
Heextend%20和%207.5%%20高渗%20盐水%20和%20葡聚糖%20是%20当量%20至%20乳酸%20林格氏%20in%20a%20猪%20模型%20of%20初始%20复苏%20of%20不受控制%20出血%20休克。
- DOI:
10.1097/ta.0b013e3182367b1c - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
G. Riha;Nicholas R. Kunio;Philbert Y. Van;Gregory J. Hamilton;Ross Anderson;J. Differding;M. Schreiber - 通讯作者:
M. Schreiber
A Wet Cold-Flow Technology for Tackling Offshore Flow-Assurance Problems
用于解决海上流量保证问题的湿冷流技术
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
R. Azarinezhad;A. Chapoy;Ross Anderson;B. Tohidi - 通讯作者:
B. Tohidi
Ross Anderson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ross Anderson', 18)}}的其他基金
Creating and comprehending the circuitry of life: precise biomolecular design of multi-centre redox enzymes for a synthetic metabolism
创建和理解生命回路:用于合成代谢的多中心氧化还原酶的精确生物分子设计
- 批准号:
BB/W003449/1 - 财政年份:2022
- 资助金额:
$ 64.97万 - 项目类别:
Research Grant
Tracking Covid Cybercrime and Abuse
追踪 Covid 网络犯罪和滥用行为
- 批准号:
EP/V026178/1 - 财政年份:2020
- 资助金额:
$ 64.97万 - 项目类别:
Research Grant
Interdisciplinary Centre for Finding, Understanding and Countering Crime in the Cloud
寻找、理解和打击云端犯罪的跨学科中心
- 批准号:
EP/M020320/1 - 财政年份:2015
- 资助金额:
$ 64.97万 - 项目类别:
Research Grant
Building Solar-Powered, Carbon-Fixing Protoalgae
构建太阳能固碳原藻
- 批准号:
BB/M02315X/1 - 财政年份:2015
- 资助金额:
$ 64.97万 - 项目类别:
Research Grant
The Deterrence of Deception in Socio-Technical Systems
社会技术系统中欺骗的威慑
- 批准号:
EP/K033476/1 - 财政年份:2013
- 资助金额:
$ 64.97万 - 项目类别:
Research Grant
Assembly of Artificial Oxidoreductases
人工氧化还原酶的组装
- 批准号:
BB/I014063/1 - 财政年份:2011
- 资助金额:
$ 64.97万 - 项目类别:
Research Grant
Measuring the Security of Internet Infrastructure
衡量互联网基础设施的安全性
- 批准号:
EP/H018298/1 - 财政年份:2010
- 资助金额:
$ 64.97万 - 项目类别:
Research Grant
相似海外基金
Catalytically Generated Amidyl Radicals for Site-Selective Intermolecular C-H Functionalization
催化生成酰胺自由基用于位点选择性分子间 C-H 官能化
- 批准号:
10679463 - 财政年份:2023
- 资助金额:
$ 64.97万 - 项目类别:
CAREER: CAS: Organometallic Chemistry of Catalytically Relevant Copper(III) Complexes
职业:CAS:催化相关铜 (III) 配合物的有机金属化学
- 批准号:
2237757 - 财政年份:2023
- 资助金额:
$ 64.97万 - 项目类别:
Continuing Grant
Clarification of catalytically active structure of crystalline Mo3VOx and its multi-functionalization
结晶Mo3VOx催化活性结构的阐明及其多功能化
- 批准号:
21K14464 - 财政年份:2021
- 资助金额:
$ 64.97万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Teaching Main Group Compounds to Activate Catalytically Relevant Bonds
教授主族化合物激活催化相关键
- 批准号:
DP210101639 - 财政年份:2021
- 资助金额:
$ 64.97万 - 项目类别:
Discovery Projects
Catalytically active gold nanoclusters stabilized by N-heterocyclic carbene ligands
N-杂环卡宾配体稳定的催化活性金纳米团簇
- 批准号:
532969-2019 - 财政年份:2020
- 资助金额:
$ 64.97万 - 项目类别:
Postdoctoral Fellowships
Contol of catalytically active sites based on the framework Al atoms in metal-containing zeolites and its precise structure analysis
含金属沸石中骨架Al原子催化活性位点的控制及其精确结构分析
- 批准号:
20K22551 - 财政年份:2020
- 资助金额:
$ 64.97万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
CAS: Organometallic Chemistry of Catalytically Relevant High Valent Nickel and Copper
CAS:催化相关高价镍和铜的有机金属化学
- 批准号:
1954985 - 财政年份:2020
- 资助金额:
$ 64.97万 - 项目类别:
Standard Grant
Catalytically inactive Cas9-induced genome destabilization: mechanistic study and applications to manipulation of structural variations
催化失活的 Cas9 诱导的基因组不稳定:结构变异操纵的机制研究和应用
- 批准号:
19K22397 - 财政年份:2019
- 资助金额:
$ 64.97万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Constructing catalytically proficient and functionally diverse enzymes from simple, de novo designed proteins
从简单、从头设计的蛋白质构建催化能力强且功能多样的酶
- 批准号:
2278910 - 财政年份:2019
- 资助金额:
$ 64.97万 - 项目类别:
Studentship
CAREER: Tackling the Solvent-Stabilizer Co-contamination by Propanotrophic Bacteria with Catalytically Versatile Di-iron Monooxygenases
职业生涯:利用催化多功能二铁单加氧酶解决丙营养菌引起的溶剂稳定剂双重污染
- 批准号:
1846945 - 财政年份:2019
- 资助金额:
$ 64.97万 - 项目类别:
Continuing Grant














{{item.name}}会员




