Single protein crystal spectroscopy and crystallography of hydrogenase under electrochemical control
电化学控制下氢化酶的单蛋白晶体光谱和晶体学
基本信息
- 批准号:BB/R018413/1
- 负责人:
- 金额:$ 82.13万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proteins are the nanoscale 'machines' that control almost all processes in cells. Importantly they are responsible for speeding up (catalysing) chemical reactions that make the essential molecules for life and release or store energy. Understanding the structures of individual proteins at the atomic level has been absolutely key in building up our understanding of how they contribute to the function of cells. In particular, the technique of X-ray crystallography has been extremely valuable in providing 'snapshot' images of many different proteins at the level of individual atoms. In this approach, crystals of the protein are prepared, and are probed using a high energy X-ray source which diffracts offindividual atoms in the crystal, giving a pattern that reveals the positions of atoms in the protein. A series of these 'snapshots' is needed to understand each step in how a protein works, and it is often difficult to trap proteins in specific states relevant to their function in order to obtain a complete set of 'snapshots'. This is particularly true for a group of 'redox' proteins which catalyse chemical reactions involving the transfer of electrons - oxidation and reduction reactions. A further challenge arises because these redox proteins often incorporate metal atoms that are susceptible to damage by X-rays during the data collection for crystal structure determination. It is very timely that we find new tools for studying these sort of proteins, because they catalyse many chemical reactions which are relevant to solving big global challenges, including how to use hydrogen as a sustainable fuel, how to capture the greenhouse gas carbon dioxide and turn it into useful chemicals, and how to efficiently produce the fertilisers needed to sustain the world's growing population. In this project, we demonstrate a completely new approach to controlling and verifying the state of redox proteins that will allow crystal structure snapshots to be produced for many more of the important functional states of these redox proteins. Our focus is a protein called hydrogenase which allows microbes to live on hydrogen gas as their energy source. In earlier preliminary work, we have shown that we can use electrodes to control a single crystal of hydrogenase to generate uniform states relevant to its function. This provides an unprecedented way to get proteins in single crystals into specific states ready to record X-ray crystallographic 'snapshots'. At the same time, we make use of imaging using infrared light with a special infrared microscope to confirm the state of the protein in the crystal. During the project, we will show that we can prepare specific states of protein crystals in this way and then record their X-ray structures to yield snapshots of previously unseen states of the protein. This will yield new information on how proteins function as efficient catalysts for the important reactions mentioned above. We will also use the infrared imaging approach to check the crystals after exposure to X-rays to make sure that the state of the protein in the crystal has not been damaged during X-ray crystallographic data collection. This approach will lead to much more reliable snapshots of redox proteins.The project thus represents a step change for structural biology of redox proteins and understanding the function of proteins which may teach us how to solve important global problems. We would like these tools to become widely available to structural biologists who solve the structures of complicated proteins, and during this project we aim to develop our approaches so that they can be readily implemented.What we learn about the way that hydrogenases work in the course of this project will help to propel biotechnological applications of hydrogenases, and will underpin development of alternative chemical catalysts based on the cheap metals, nickel and iron, found inside the hydrogenases.
蛋白质是控制细胞中几乎所有过程的纳米级“机器”。重要的是,它们负责加速(催化)化学反应,使生命的基本分子和释放或储存能量。在原子水平上理解单个蛋白质的结构对于我们理解它们如何促进细胞功能至关重要。特别是,X射线晶体学技术在提供许多不同蛋白质在单个原子水平上的“快照”图像方面非常有价值。在这种方法中,制备蛋白质晶体,并使用高能X射线源进行探测,该X射线源衍射晶体中的单个原子,给出揭示蛋白质中原子位置的图案。需要一系列这些“快照”来了解蛋白质如何工作的每一步,并且通常很难将蛋白质捕获在与其功能相关的特定状态下,以获得一组完整的“快照”。这对于一组“氧化还原”蛋白质尤其如此,它们催化涉及电子转移的化学反应-氧化和还原反应。另一个挑战出现了,因为这些氧化还原蛋白质通常含有金属原子,这些金属原子在晶体结构测定的数据收集过程中容易受到X射线的破坏。我们发现研究这类蛋白质的新工具是非常及时的,因为它们催化许多与解决全球重大挑战有关的化学反应,包括如何使用氢作为可持续燃料,如何捕获温室气体二氧化碳并将其转化为有用的化学品,以及如何有效地生产维持世界人口增长所需的肥料。在这个项目中,我们展示了一种全新的方法来控制和验证氧化还原蛋白的状态,这将允许为这些氧化还原蛋白的更多重要功能状态生成晶体结构快照。我们的重点是一种叫做氢化酶的蛋白质,它允许微生物以氢气为能源。在早期的初步工作中,我们已经表明,我们可以使用电极来控制氢化酶的单晶,以产生与其功能相关的均匀状态。这提供了一种前所未有的方法,可以使单晶中的蛋白质进入特定状态,准备记录X射线晶体学“快照”。同时,我们使用特殊的红外显微镜利用红外光成像来确认晶体中蛋白质的状态。在该项目中,我们将证明我们可以以这种方式制备蛋白质晶体的特定状态,然后记录它们的X射线结构,以生成蛋白质以前未见过的状态的快照。这将产生关于蛋白质如何作为上述重要反应的有效催化剂的新信息。我们还将使用红外成像方法检查暴露于X射线后的晶体,以确保晶体中蛋白质的状态在X射线晶体学数据收集期间没有被破坏。这种方法将导致氧化还原蛋白质的更可靠的快照。因此,该项目代表了氧化还原蛋白质的结构生物学和理解蛋白质功能的一个步骤,这可能会教我们如何解决重要的全球性问题。我们希望这些工具能广泛应用于解决复杂蛋白质结构的结构生物学家,在这个项目中,我们的目标是发展我们的方法,以便它们可以容易地实施。我们在这个项目过程中对氢化酶工作方式的了解将有助于推动氢化酶的生物技术应用,并将支持替代化学催化剂的开发,这些催化剂基于氢化酶中发现的廉价金属镍和铁。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
E. coli Nickel-Iron Hydrogenase 1 Catalyses Non-native Reduction of Flavins: Demonstration for Alkene Hydrogenation by Old Yellow Enzyme Ene-reductases**
大肠杆菌镍铁氢化酶 1 催化黄素的非天然还原:老黄酶烯还原酶对烯烃氢化的演示**
- DOI:10.1002/ange.202101186
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Joseph Srinivasan S
- 通讯作者:Joseph Srinivasan S
Electrochemical control of [FeFe]-hydrogenase single crystals reveals complex redox populations at the catalytic site.
- DOI:10.1039/d1dt02219a
- 发表时间:2021-09-21
- 期刊:
- 影响因子:0
- 作者:Morra S;Duan J;Winkler M;Ash PA;Happe T;Vincent KA
- 通讯作者:Vincent KA
Electrochemical experiments define potentials associated with binding of substrates and inhibitors to nitrogenase MoFe protein.
- DOI:10.1039/d2fd00170e
- 发表时间:2023-07-19
- 期刊:
- 影响因子:3.4
- 作者:Chen, Ting;Ash, Philip A.;Seefeldt, Lance C.;Vincent, Kylie A.
- 通讯作者:Vincent, Kylie A.
Structural basis for bacterial energy extraction from atmospheric hydrogen.
- DOI:10.1038/s41586-023-05781-7
- 发表时间:2023-03
- 期刊:
- 影响因子:64.8
- 作者:Grinter, Rhys;Kropp, Ashleigh;Venugopal, Hari;Senger, Moritz;Badley, Jack;Cabotaje, Princess R.;Jia, Ruyu;Duan, Zehui;Huang, Ping;Stripp, Sven T.;Barlow, Christopher K.;Belousoff, Matthew;Shafaat, Hannah S.;Cook, Gregory M.;Schittenhelm, Ralf B.;Vincent, Kylie A.;Khalid, Syma;Berggren, Gustav;Greening, Chris
- 通讯作者:Greening, Chris
Comprehensive structural, infrared spectroscopic and kinetic investigations of the roles of the active-site arginine in bidirectional hydrogen activation by the [NiFe]-hydrogenase 'Hyd-2' from Escherichia coli.
- DOI:10.1039/d2sc05641k
- 发表时间:2023-08-16
- 期刊:
- 影响因子:8.4
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kylie Vincent其他文献
Kylie Vincent的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kylie Vincent', 18)}}的其他基金
NextGen Structural Biology under Electrochemical Control: Filling in Missing Intermediates in Metalloenzyme Catalytic Cycles
电化学控制下的下一代结构生物学:填补金属酶催化循环中缺失的中间体
- 批准号:
BB/X002624/1 - 财政年份:2023
- 资助金额:
$ 82.13万 - 项目类别:
Research Grant
Mechanistic and Structural Insights into NO sensing by Iron-Sulfur Cluster Regulators
铁硫簇调节器对 NO 传感的机理和结构见解
- 批准号:
BB/P009697/1 - 财政年份:2017
- 资助金额:
$ 82.13万 - 项目类别:
Research Grant
New routes to driving enzyme-catalysed chemical synthesis using hydrogen gas
使用氢气驱动酶催化化学合成的新途径
- 批准号:
EP/N013514/1 - 财政年份:2016
- 资助金额:
$ 82.13万 - 项目类别:
Research Grant
INSPIRE: Robust Biocatalysis for Energy Solutions(2)
INSPIRE:用于能源解决方案的强大生物催化(2)
- 批准号:
EP/J015202/1 - 财政年份:2011
- 资助金额:
$ 82.13万 - 项目类别:
Research Grant
相似国自然基金
子宫内膜间质与巨噬细胞之间通过Protein S-MerTK-Apelin信号对
话促进子宫腺肌病蜕膜化缺陷的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
有翅与无翅蚜虫差异分泌唾液蛋白Cuticular protein在调控植物细胞壁免疫中的功能
- 批准号:32372636
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
原发性开角型青光眼中SIPA1L1促进小梁网细胞外基质蛋白累积升高眼压的作用机制
- 批准号:82371054
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
胆固醇合成蛋白CYP51介导线粒体通透性转换诱发Th17/Treg细胞稳态失衡在舍格伦综合征中的作用机制研究
- 批准号:82370976
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
转运蛋白RCP调控巨噬细胞脂肪酸氧化参与系统性红斑狼疮发病的机制研究
- 批准号:82371798
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
细胞周期蛋白依赖性激酶Cdk1介导卵母细胞第一极体重吸收致三倍体发生的调控机制研究
- 批准号:82371660
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
G蛋白偶联受体GPR110调控Lp-PLA2抑制非酒精性脂肪性肝炎的作用及机制研究
- 批准号:82370865
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
新型小分子蛋白—人肝细胞生长因子三环域(hHGFK1)抑制破骨细胞及治疗小鼠骨质疏松的疗效评估与机制研究
- 批准号:82370885
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
蛋白精氨酸甲基化转移酶PRMT5调控PPARG促进巨噬细胞M2极化及其在肿瘤中作用的机制研究
- 批准号:82371738
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
紧密连接蛋白PARD3下调介导黏膜上皮屏障破坏激活STAT3/SNAI2通路促进口腔白斑病形成及进展的机制研究
- 批准号:82370954
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
相似海外基金
Single Crystal X-ray Diffractometer with Microfocus Rotating Anode Source (Cu)
带微焦点旋转阳极源(铜)的单晶 X 射线衍射仪
- 批准号:
10431079 - 财政年份:2022
- 资助金额:
$ 82.13万 - 项目类别:
Shining Light on Metalloprotein Mechanism: Single Protein Crystal Catalytic Studies Driven by 'Caged' Electron Sources
揭示金属蛋白机制:“笼式”电子源驱动的单蛋白晶体催化研究
- 批准号:
EP/V048988/1 - 财政年份:2021
- 资助金额:
$ 82.13万 - 项目类别:
Research Grant
Acquisition of a Single Crystal X-ray Diffraction System for Macromolecular and Small Molecule Crytsallography
用于大分子和小分子晶体学的单晶 X 射线衍射系统的获取
- 批准号:
10177052 - 财政年份:2021
- 资助金额:
$ 82.13万 - 项目类别:
Utilization of membrane filter for a protein crystallization field and single- crystal X-ray diffraction analysis
利用膜过滤器进行蛋白质结晶场和单晶 X 射线衍射分析
- 批准号:
15K05668 - 财政年份:2015
- 资助金额:
$ 82.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a new integration method of neutron time-of-flight single-crystal Bragg peaks from a membrane protein crystal
开发膜蛋白晶体中子飞行时间单晶布拉格峰的新积分方法
- 批准号:
15K04737 - 财政年份:2015
- 资助金额:
$ 82.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optimization of the protein structure for synthesis of single crystal nanoparticles
单晶纳米粒子合成的蛋白质结构优化
- 批准号:
25390020 - 财政年份:2013
- 资助金额:
$ 82.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
in-situ Observation of Growth of Metal Nanoparticle-assembled Protein Crystal by Single Nanoparticle Detection
通过单纳米粒子检测原位观察金属纳米粒子组装的蛋白质晶体的生长
- 批准号:
24510141 - 财政年份:2012
- 资助金额:
$ 82.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SINGLE CRYSTAL XAS STUDIES OF NITROGENASE PROTEINS
固氮酶蛋白的单晶 XAS 研究
- 批准号:
8169950 - 财政年份:2010
- 资助金额:
$ 82.13万 - 项目类别:
SINGLE CRYSTAL XAS STUDIES OF NITROGENASE PROTEINS
固氮酶蛋白的单晶 XAS 研究
- 批准号:
7954220 - 财政年份:2009
- 资助金额:
$ 82.13万 - 项目类别:
SINGLE CRYSTAL XAS STUDIES OF NITROGENASE PROTEINS
固氮酶蛋白的单晶 XAS 研究
- 批准号:
7721839 - 财政年份:2008
- 资助金额:
$ 82.13万 - 项目类别:














{{item.name}}会员




