New routes to driving enzyme-catalysed chemical synthesis using hydrogen gas
使用氢气驱动酶催化化学合成的新途径
基本信息
- 批准号:EP/N013514/1
- 负责人:
- 金额:$ 374.71万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bacterial cells act as miniature chemical factories and have evolved specialised routes to making many of the sorts of molecules that we use as pharmaceuticals, pleasant fragrances, food additives or chemicals for use in agriculture. The key parts of the cells for carrying out this work are the enzymes. It is possible to break cells open and isolate an enzyme for making a specific molecule. Bacteria can also be engineered to make artificial chemicals, expanding the range of molecules they can produce. Procedures are now well-established for growing bacteria on a large scale and isolating large quantities of enzymes, and at the same time, chemical companies are starting to realise the benefits of using enzymes instead of traditional chemical routes. In the production of complicated molecules such as drugs, fragrances and food flavourings, enzymes generate much less waste, make purer chemical products, and allow chemistry to be carried out in water rather than toxic, polluting solvents. The purity of the end product is particularly important in the food and pharmaceutical industries where contaminants may have serious, harmful effects. Although there has been increasing interest in using enzyme catalysis in chemical production, many challenges remain to be overcome before this approach can be widely adopted. Once isolated from their cells, enzymes are often quite unstable. Their stability can be improved by attaching them to surfaces, but this often requires complicated attachment processes and can be expensive. Secondly, many enzymes only work in the presence of special helper-molecules called cofactors which are used up by the enzymes in the process of making chemicals. The cofactors are also expensive, and for enzyme processes to be economically viable, it is essential to have some way of recycling the cofactors. Unfortunately, the currently-available methods for recycling the cofactors make even more waste which contaminates the desired chemical products. We have developed a technology that addresses both of these challenges, offering a much-needed step change for enzyme catalysis. At the moment, our technology has only been demonstrated on a small scale in our laboratories, but we now need to convince the chemical, pharmaceutical and food industries that this offers real benefits for the future of chemical production. Our technology works as follows: once we have isolated enzymes from the bacterial cells, we immediately attach them onto cheap carbon beads. This is a very simple one-step process. We attach several different types of enzyme to each bead so that the enzymes can work together to carry out each step in making chemicals. We supply the beads with low, safe levels of hydrogen gas, and this provides the energy for recycling the cofactors and to drive the enzyme machinery necessary to make the required chemicals. To make a desired chemical, we start by putting a cheap chemical building-block in water, we bubble in a little hydrogen gas, add our enzyme-modified beads, and after a few hours, the desired chemical product is ready to collect! The enzyme-modified beads can be easily scooped out of the reaction mixture, leaving nothing else except the desired product and a tiny trace of the harmless cofactor. As an added bonus, the beads can be collected and re-used a number of times, minimising the cost of using enzymes. To take our concept from a lab-scale idea to a technology ready for industry to adopt, we need to show that we can produce the enzymes on a large scale. We need to show how quickly the beads can produce chemicals, and how pure the products are. This project will answer these sort of questions, so that at the end of the 5 years, we can convince potential customers (chemical, pharmaceutical and food additive companies) that our technology will allow them to make chemicals more cheaply and in a more environmentally-friendly way.
细菌细胞就像微型化学工厂一样,已经进化出了专门的路线来制造我们用作药物、令人愉快的香料、食品添加剂或农业化学品的许多种类的分子。进行这项工作的细胞的关键部分是酶。有可能打破细胞并分离出一种酶来制造一种特定的分子。细菌也可以被改造成人造化学品,扩大它们可以生产的分子范围。现在已经建立了大规模培养细菌和分离大量酶的程序,与此同时,化学公司开始意识到使用酶而不是传统化学路线的好处。在药物、香料和食品调味剂等复杂分子的生产中,酶产生的废物要少得多,制造的化学产品更纯净,而且化学反应可以在水中进行,而不是在有毒、污染的溶剂中进行。最终产品的纯度在食品和制药行业中尤为重要,因为污染物可能会产生严重的有害影响。尽管在化学生产中使用酶催化的兴趣越来越大,但在这种方法被广泛采用之前,仍有许多挑战有待克服。一旦从细胞中分离出来,酶通常非常不稳定。它们的稳定性可以通过将它们附着到表面来提高,但这通常需要复杂的附着过程并且可能是昂贵的。第二,许多酶只有在称为辅因子的特殊辅助分子存在的情况下才起作用,辅因子在酶制造化学品的过程中被消耗掉。辅因子也是昂贵的,并且为了使酶过程在经济上可行,必须有某种方式回收辅因子。不幸的是,目前可获得的用于再循环辅因子的方法产生甚至更多的废物,这污染了所需的化学产品。我们已经开发出一种技术来解决这两个挑战,为酶催化提供了急需的步骤变化。目前,我们的技术只在实验室中进行了小规模的演示,但我们现在需要说服化学、制药和食品行业,这将为未来的化学生产带来真实的好处。我们的技术工作原理如下:一旦我们从细菌细胞中分离出酶,我们立即将它们附着在廉价的碳珠上。这是一个非常简单的一步过程。我们将几种不同类型的酶附着在每个珠子上,这样酶就可以一起工作来完成制造化学品的每一步。我们为珠子提供低水平的安全氢气,这为回收辅因子提供了能量,并驱动了制造所需化学品所需的酶机制。为了制造一种想要的化学品,我们首先将一种便宜的化学积木放入水中,然后鼓入一点氢气,再加入我们的酶改性珠子,几个小时后,就可以收集到想要的化学产品了!酶修饰的珠子可以很容易地从反应混合物中挖出来,除了所需的产物和微量的无害辅因子外,什么也不留下。作为一个额外的好处,珠子可以收集和重复使用多次,最大限度地减少使用酶的成本。为了将我们的概念从实验室规模的想法转变为工业界可以采用的技术,我们需要证明我们可以大规模生产酶。我们需要展示珠子能多快地产生化学物质,以及产品的纯度。该项目将回答这些问题,以便在5年结束时,我们可以说服潜在客户(化学,制药和食品添加剂公司),我们的技术将使他们能够以更便宜,更环保的方式生产化学品。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Proton Transfer in the Catalytic Cycle of [NiFe] Hydrogenases: Insight from Vibrational Spectroscopy.
- DOI:10.1021/acscatal.6b03182
- 发表时间:2017-04-07
- 期刊:
- 影响因子:12.9
- 作者:Ash PA;Hidalgo R;Vincent KA
- 通讯作者:Vincent KA
Encyclopedia of Interfacial Chemistry
界面化学百科全书
- DOI:10.1016/b978-0-12-409547-2.13352-9
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Ash P
- 通讯作者:Ash P
Vibrational Spectroscopic Techniques for Probing Bioelectrochemical Systems.
用于探测生物电化学系统的振动光谱技术。
- DOI:10.1007/10_2016_3
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Ash PA
- 通讯作者:Ash PA
The crystalline state as a dynamic system: IR microspectroscopy under electrochemical control for a [NiFe] hydrogenase.
- DOI:10.1039/d1sc01734a
- 发表时间:2021-10-13
- 期刊:
- 影响因子:8.4
- 作者:Ash PA;Kendall-Price SET;Evans RM;Carr SB;Brasnett AR;Morra S;Rowbotham JS;Hidalgo R;Healy AJ;Cinque G;Frogley MD;Armstrong FA;Vincent KA
- 通讯作者:Vincent KA
Generating single metalloprotein crystals in well-defined redox states: electrochemical control combined with infrared imaging of a NiFe hydrogenase crystal.
- DOI:10.1039/c7cc02591b
- 发表时间:2017-05-30
- 期刊:
- 影响因子:0
- 作者:Ash PA;Carr SB;Reeve HA;Skorupskaitė A;Rowbotham JS;Shutt R;Frogley MD;Evans RM;Cinque G;Armstrong FA;Vincent KA
- 通讯作者:Vincent KA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kylie Vincent其他文献
Kylie Vincent的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kylie Vincent', 18)}}的其他基金
NextGen Structural Biology under Electrochemical Control: Filling in Missing Intermediates in Metalloenzyme Catalytic Cycles
电化学控制下的下一代结构生物学:填补金属酶催化循环中缺失的中间体
- 批准号:
BB/X002624/1 - 财政年份:2023
- 资助金额:
$ 374.71万 - 项目类别:
Research Grant
Single protein crystal spectroscopy and crystallography of hydrogenase under electrochemical control
电化学控制下氢化酶的单蛋白晶体光谱和晶体学
- 批准号:
BB/R018413/1 - 财政年份:2018
- 资助金额:
$ 374.71万 - 项目类别:
Research Grant
Mechanistic and Structural Insights into NO sensing by Iron-Sulfur Cluster Regulators
铁硫簇调节器对 NO 传感的机理和结构见解
- 批准号:
BB/P009697/1 - 财政年份:2017
- 资助金额:
$ 374.71万 - 项目类别:
Research Grant
INSPIRE: Robust Biocatalysis for Energy Solutions(2)
INSPIRE:用于能源解决方案的强大生物催化(2)
- 批准号:
EP/J015202/1 - 财政年份:2011
- 资助金额:
$ 374.71万 - 项目类别:
Research Grant
相似海外基金
CO2 Routes Across Europe (COREU)
穿越欧洲的二氧化碳路线 (COREU)
- 批准号:
10111502 - 财政年份:2024
- 资助金额:
$ 374.71万 - 项目类别:
EU-Funded
CO2 ROUTES ACROSS EUROPE (COREU)
穿越欧洲的二氧化碳路线 (COREU)
- 批准号:
10110613 - 财政年份:2024
- 资助金额:
$ 374.71万 - 项目类别:
EU-Funded
Evolutionary routes to phenotypic convergence in vertebrates
脊椎动物表型趋同的进化途径
- 批准号:
NE/Z000149/1 - 财政年份:2024
- 资助金额:
$ 374.71万 - 项目类别:
Research Grant
CAS: Solution Routes Towards Metastable Functional Chalcogenides
CAS:亚稳态功能硫属化物的解决方案
- 批准号:
2333388 - 财政年份:2024
- 资助金额:
$ 374.71万 - 项目类别:
Standard Grant
Characterising Transport Routes in Dual-phase Molten-salt Membranes for Carbon Dioxide Separation
表征二氧化碳分离双相熔盐膜中的传输路径
- 批准号:
2875396 - 财政年份:2023
- 资助金额:
$ 374.71万 - 项目类别:
Studentship
PLEXUS: Philosophical, Logical, and Experimental routes to substructurality
PLEXUS:通往底层的哲学、逻辑和实验路线
- 批准号:
EP/X038246/1 - 财政年份:2023
- 资助金额:
$ 374.71万 - 项目类别:
Research Grant
An IGF-1R-targeting peptide drug conjugate for targeted treatment of atypical teratoid/rhabdoid tumors
用于靶向治疗非典型畸胎瘤/横纹肌样瘤的 IGF-1R 靶向肽药物缀合物
- 批准号:
10760549 - 财政年份:2023
- 资助金额:
$ 374.71万 - 项目类别:
CUSTOMIZED GAMES AND ROUTES FOR CULTURAL HERITAGE
文化遗产定制游戏和路线
- 批准号:
10066519 - 财政年份:2023
- 资助金额:
$ 374.71万 - 项目类别:
EU-Funded
New Routes to fluorocarbons using fluoroboranes
使用氟硼烷生产碳氟化合物的新途径
- 批准号:
EP/X021858/1 - 财政年份:2023
- 资助金额:
$ 374.71万 - 项目类别:
Research Grant
Development of routes to new fluorine containing molecules utilising commodity chemicals
利用商品化学品开发新型含氟分子的路线
- 批准号:
2867685 - 财政年份:2023
- 资助金额:
$ 374.71万 - 项目类别:
Studentship