Multiplex Bioorthogonal Labelling of Nucleic Acids: A Tool for Super-Resolution Imaging

核酸的多重生物正交标记:超分辨率成像工具

基本信息

  • 批准号:
    BB/R022003/1
  • 负责人:
  • 金额:
    $ 19.26万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Understanding how mammalian cells function in normal development and disease is central to life science research, and is necessary to discover new drugs and treatments. Many biological systems are extremely complex and comprise many different components. To dissect the individual parts of this puzzle it is necessary to use specific labels that can be used to mark individual components. Over the last 30-years many different approaches have been used for labelling specific parts of the puzzle, often in different colours. Some of the key factors in a cell are the individual components made of proteins and analogous to the parts of a car. These different proteins can be labelled with specific reagents called antibodies that can be tagged in different colours and visualised by microscopy to explore how they relate to each other in 3D space. Similarly this approach can be used on a molecular level to ask if these components interact with each other. There are very good tools for analysing proteins, in contrast it is much more difficult to label DNA and RNA in cells. DNA encodes our genetic information and is carefully folded with proteins to protect it from damage and to regulate how the information is accessed. To make proteins cells copy the information stored in DNA into a temporary code called RNA. In turn RNA is used as a recipe to make proteins. Together RNA and DNA are described as nucleic acids and although these are critical components it is difficult to separately label them, as they look very similar. We have recently shown that in cells, DNA is packaged with RNA and proteins to make a mesh, similar to a fishing net, that is important for regulating how cells function, but we realised that we lacked the tools to investigate this relationship. Understanding these interactions is crucial as one of the proteins for making the mesh is often mutated in cancer, and genetic mutations in this protein cause developmental defects in children. Therefore, to understand how proteins, DNA and RNA work together we will develop a new palette of reagents that will allow us to mark these different components in cells in different colours simultaneously. This multiplex approach will be applicable to many different studies but will critically enable use to understand how individual components work together in regulating DNA and how in disease this can go wrong. To dissect the complex workings of life it is necessary to use innovative methods. To achieve our goals we have assembled a team of chemists and molecular biologists who together can make new tools for understanding how life works.
了解哺乳动物细胞在正常发育和疾病中的功能是生命科学研究的核心,也是发现新药物和治疗方法所必需的。许多生物系统极其复杂,由许多不同的组成部分组成。要剖析这个难题的各个部分,有必要使用可用于标记各个组件的特定标签。在过去的 30 年里,人们使用了许多不同的方法来标记拼图的特定部分,通常使用不同的颜色。细胞中的一些关键因素是由蛋白质组成的各个组件,类似于汽车的部件。这些不同的蛋白质可以用称为抗体的特定试剂进行标记,这些试剂可以用不同的颜色进行标记,并通过显微镜进行可视化,以探索它们在 3D 空间中如何相互关联。类似地,这种方法可以在分子水平上使用,以询问这些成分是否彼此相互作用。有非常好的分析蛋白质的工具,相比之下,标记细胞中的 DNA 和 RNA 要困难得多。 DNA 编码我们的遗传信息,并与蛋白质仔细折叠,以保护其免受损坏并调节信息的获取方式。为了让蛋白质细胞将 DNA 中存储的信息复制到称为 RNA 的临时代码中。反过来,RNA 被用作制造蛋白质的配方。 RNA 和 DNA 一起被描述为核酸,尽管它们是关键成分,但很难单独标记它们,因为它们看起来非常相似。我们最近表明,在细胞中,DNA 与 RNA 和蛋白质包装在一起形成一个类似于渔网的网状结构,这对于调节细胞功能非常重要,但我们意识到我们缺乏研究这种关系的工具。了解这些相互作用至关重要,因为制造网状结构的蛋白质之一经常在癌症中发生突变,而这种蛋白质的基因突变会导致儿童发育缺陷。因此,为了了解蛋白质、DNA 和 RNA 如何协同工作,我们将开发一种新的试剂调色板,使我们能够同时用不同的颜色标记细胞中的这些不同成分。这种多重方法将适用于许多不同的研究,但对于了解各个成分如何协同调节 DNA 以及在疾病中如何出错至关重要。要剖析生命的复杂运作方式,有必要使用创新的方法。为了实现我们的目标,我们组建了一个由化学家和分子生物学家组成的团队,他们可以共同开发新的工具来理解生命的运作方式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nick Gilbert其他文献

Chromatin modified in a molecular reaction chamber
在分子反应室中修饰的染色质
  • DOI:
    10.1038/d41586-020-00638-9
  • 发表时间:
    2020-03-11
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Nick Gilbert;Fred van Leeuwen
  • 通讯作者:
    Fred van Leeuwen
The role of chromatin structure in regulating the expression of clustered genes
染色质结构在调节成簇基因表达中的作用
  • DOI:
    10.1038/nrg1688
  • 发表时间:
    2005-09-09
  • 期刊:
  • 影响因子:
    52.000
  • 作者:
    Duncan Sproul;Nick Gilbert;Wendy A. Bickmore
  • 通讯作者:
    Wendy A. Bickmore
Genome organization: experiments and modelling
基因组组织:实验和建模
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nick Gilbert;Davide Marenduzzo
  • 通讯作者:
    Davide Marenduzzo
SuperStructure: a Parameter-Free Super-Structure Identifier for SMLM Data
SuperStructure:SMLM 数据的无参数超结构标识符
  • DOI:
    10.1101/2020.08.19.254540
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Marenda;E. Lazarova;S. V. D. Linde;Nick Gilbert;Davide Michieletto
  • 通讯作者:
    Davide Michieletto
S05-01. Polycomb repressive complexes are required to maintain compact chromatin structure at Hox loci
  • DOI:
    10.1016/j.mod.2009.06.954
  • 发表时间:
    2009-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ragnhild Eskeland;Duncan Sproul;Graeme Grimes;Shelagh Boyle;Martin Lieb;Clemence Kress;Nick Gilbert;Helle F. Jorgensen;Amanda G. Fisher;Arthur I. Skoultchi;Anton Wutz;Wendy A. Bickmore
  • 通讯作者:
    Wendy A. Bickmore

Nick Gilbert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nick Gilbert', 18)}}的其他基金

Nuclear architecture: structure, function and disease
核结构:结构、功能和疾病
  • 批准号:
    MC_UU_00035/6
  • 财政年份:
    2023
  • 资助金额:
    $ 19.26万
  • 项目类别:
    Intramural
Chromatin architecture and regulation
染色质结构和调控
  • 批准号:
    MC_UU_00007/13
  • 财政年份:
    2018
  • 资助金额:
    $ 19.26万
  • 项目类别:
    Intramural
Understanding the regulation and topological organisation of DNA in the human genome
了解人类基因组中 DNA 的调控和拓扑组织
  • 批准号:
    MR/J00913X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 19.26万
  • 项目类别:
    Fellowship

相似海外基金

Antibody-Palladium Conjugates for Bioorthogonal Anti-Cancer Prodrug Activation
用于生物正交抗癌前药激活的抗体-钯缀合物
  • 批准号:
    EP/Y024540/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.26万
  • 项目类别:
    Fellowship
Bioorthogonal probe development for highly parallel in vivo imaging
用于高度并行体内成像的生物正交探针开发
  • 批准号:
    10596786
  • 财政年份:
    2023
  • 资助金额:
    $ 19.26万
  • 项目类别:
Bioorthogonal temporospatial tools
生物正交时空工具
  • 批准号:
    10711005
  • 财政年份:
    2023
  • 资助金额:
    $ 19.26万
  • 项目类别:
Antibody-guided localized activation of bioorthogonal protodrugs via click chemistry
通过点击化学抗体引导生物正交原药的局部激活
  • 批准号:
    10760737
  • 财政年份:
    2023
  • 资助金额:
    $ 19.26万
  • 项目类别:
Bioactive and bioorthogonal molecules for probing living systems
用于探测生命系统的生物活性和生物正交分子
  • 批准号:
    RGPIN-2022-04234
  • 财政年份:
    2022
  • 资助金额:
    $ 19.26万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Bioorthogonal Reactions
新颖的生物正交反应
  • 批准号:
    572754-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 19.26万
  • 项目类别:
    University Undergraduate Student Research Awards
New Multifunctional Bioorthogonal Probes
新型多功能生物正交探针
  • 批准号:
    2203611
  • 财政年份:
    2022
  • 资助金额:
    $ 19.26万
  • 项目类别:
    Continuing Grant
Rewiring Cell Membranes with Bioorthogonal Surface Chemistry for Fundamental and Applied Studies
利用生物正交表面化学重新布线细胞膜进行基础和应用研究
  • 批准号:
    RGPIN-2017-05722
  • 财政年份:
    2022
  • 资助金额:
    $ 19.26万
  • 项目类别:
    Discovery Grants Program - Individual
Computational analysis and design of fast, specific bioorthogonal reagents and reactions
快速、特异性生物正交试剂和反应的计算分析和设计
  • 批准号:
    565641-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 19.26万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Bioorthogonal Chemistries Targeting 5-hydroxytryptophan for Biological Discovery and Biologics Development
针对 5-羟色氨酸的生物正交化学用于生物发现和生物制品开发
  • 批准号:
    2128185
  • 财政年份:
    2021
  • 资助金额:
    $ 19.26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了