ISCF WAVE 1 AGRI TECH Agronomic Big Data Analytics for improved crop management

ISCF WAVE 1 AGRI TECH 农艺大数据分析可改善作物管理

基本信息

  • 批准号:
    BB/R022798/1
  • 负责人:
  • 金额:
    $ 3.85万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Agricultural systems are complex, and must be managed if we are to achieve food security and maintain environmental quality. The management of complex systems in industry and commerce is being improved by the collection, processing and analysis of "big data" sets. For some years farmers have had the potential to collect big data sets on their crops and soils using GPS-driven monitors on the combine or tractor, data from satellite-borne sensors and the direct sampling and analysis of soils. This raises the question of whether agriculture can enter the big data era in order to solve management problems more quickly and robustly than through the conventional approach of field trials at a limited number of experimental sites. We contend that this is possible, but only by using methods to analyse the data that are biologically meaningful rather than by blindly mining data for correlations. This is a feasibility study to test two tailored big-data analytical methods on a large data set on arable fields from across the U.K. Two general approaches will be used, both of which have already been developed and published in the peer-reviewed literature, and used as research tools. The first is called boundary line analysis, a method to identify the maximum yield that a crop can achieve as a function of some soil or crop property that represents a factor (nutrient supply, canopy development) that may limit the potential yield. Boundary line analysis requires big data sets, but has the potential to give greater biological insight into the crop system, and to facilitate management decisions to remove limiting effects, than the relatively crude tools that are used in much data mining. The second approach is focussed on the analysis of yield maps produced by yield monitors on combine harvesters equipped with GPS. These maps show complex patterns of spatial variation, which are often hard to interpret usefully. When maps for two or more seasons are overlaid, the variability is even more complex. In past research we have shown that a pattern-recognition method called k-means clustering can be used to subdivide a field into regions within which the season-to-season fluctuations in yield are more or less uniform. One region may show consistent high yields, and another consistent low yields, while others fluctuate between seasons. Such regions are likely to represent parts of the field where the crop is subject to similar limitations. For example, where the soil available water content is relatively small yields may drop in drier years. A region with an emerging nutrient deficiency may show a steady decline in yield over a series of seasons. By relating the regionalization of the field, and each regions characteristic yield variations over time, to soil and other environmental information, we can hope to identify the key limiting factors at subfield scales, and by doing these analyses on big data sets, farm and regional scale patterns should also emerge. Within this project we shall show how a big agronomic data set can be most effectively analysed to allow the agronomy company which holds it best to advise their customers and obtain maximum value from the data that they collect. This will help to support improved management at farm scale, possibly including the use of precision agriculture methods to respond to within-field variation.
农业系统是复杂的,如果我们要实现粮食安全和保持环境质量,就必须对其进行管理。通过收集、处理和分析大数据集,正在改善工商复杂系统的管理。多年来,农民已经有可能使用联合收割机或拖拉机上的GPS驱动监视器、来自卫星传感器的数据以及对土壤的直接采样和分析来收集关于他们的作物和土壤的大数据集。这就提出了一个问题,农业能否进入大数据时代,以便比通过在有限数量的试验点进行田间试验的传统方法更快、更有力地解决管理问题。我们认为,这是可能的,但只有使用具有生物学意义的数据分析方法,而不是盲目挖掘数据以寻找相关性。这是一项可行性研究,目的是在英国各地的耕地上的大型数据集上测试两种量身定制的大数据分析方法。将使用两种通用方法,这两种方法都已经开发并发表在同行评议的文献中,并用作研究工具。第一种是所谓的边界线分析,这是一种确定作物能够达到的最高产量的方法,它是某种土壤或作物特性的函数,代表了可能限制潜在产量的因素(养分供应、冠层发育)。边界线分析需要大数据集,但与许多数据挖掘中使用的相对粗糙的工具相比,它有可能对作物系统提供更多的生物学洞察力,并有助于管理决策以消除限制效应。第二种方法集中于分析配备GPS的联合收割机上的产量监视器产生的产量图。这些地图显示了复杂的空间变化模式,通常很难进行有用的解释。当两个或更多季节的地图重叠时,变化就更复杂了。在过去的研究中,我们已经表明,一种称为k-均值聚类的模式识别方法可以用来将一块田地细分为产量季节间波动大致一致的区域。一个地区可能表现出持续的高产,而另一个地区可能表现出持续的低产量,而其他地区则在不同季节之间波动。这样的区域很可能代表作物受到类似限制的田地部分。例如,在土壤有效水含量相对较小的地方,干旱年份的产量可能会下降。一个出现养分缺乏的地区可能会在一系列季节中表现出产量的稳步下降。通过将田地的区划和每个地区的特征产量随时间的变化与土壤和其他环境信息联系起来,我们可以希望确定子田规模的关键限制因素,并通过在大数据集上进行这些分析,也应该可以得出农场和区域的规模模式。在这个项目中,我们将展示如何最有效地分析大型农艺数据集,以使最有把握的农艺公司向他们的客户提供建议,并从他们收集的数据中获得最大价值。这将有助于支持改进农场规模的管理,可能包括使用精准农业方法来应对田内差异。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Lark其他文献

Richard Lark的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Lark', 18)}}的其他基金

21EJP SOIL: CropGas: The effect of conservation agriculture interventions on greenhouse gas emissions
21EJP 土壤:农作物气体:保护性农业干预措施对温室气体排放的影响
  • 批准号:
    BB/X002942/1
  • 财政年份:
    2022
  • 资助金额:
    $ 3.85万
  • 项目类别:
    Research Grant
Towards transdisciplinary understanding of inherited soil surveys: an exploratory case study in Zambia.
对继承土壤调查的跨学科理解:赞比亚的探索性案例研究。
  • 批准号:
    AH/T00410X/1
  • 财政年份:
    2019
  • 资助金额:
    $ 3.85万
  • 项目类别:
    Research Grant
Plant-based controls on soil structural dynamics: elucidating the interactive roles of the genotype, phenotype and soil microbial community
基于植物的土壤结构动力学控制:阐明基因型、表型和土壤微生物群落的相互作用
  • 批准号:
    BB/N015614/2
  • 财政年份:
    2018
  • 资助金额:
    $ 3.85万
  • 项目类别:
    Research Grant
Plant-based controls on soil structural dynamics: elucidating the interactive roles of the genotype, phenotype and soil microbial community
基于植物的土壤结构动力学控制:阐明基因型、表型和土壤微生物群落的相互作用
  • 批准号:
    BB/N015614/1
  • 财政年份:
    2017
  • 资助金额:
    $ 3.85万
  • 项目类别:
    Research Grant
Real-time in situ sensing of soil nitrogen status to promote enhanced nitrogen use efficiency in agricultural systems
实时原位传感土壤氮状况,促进提高农业系统氮利用效率
  • 批准号:
    BB/P004431/1
  • 财政年份:
    2017
  • 资助金额:
    $ 3.85万
  • 项目类别:
    Research Grant
Real-time in situ sensing of soil nitrogen status to promote enhanced nitrogen use efficiency in agricultural systems
实时原位传感土壤氮状况,促进提高农业系统氮利用效率
  • 批准号:
    BB/P004431/2
  • 财政年份:
    2017
  • 资助金额:
    $ 3.85万
  • 项目类别:
    Research Grant
GCRF: CEPHaS - Strengthening Capacity in Environmental Physics, Hydrology and Statistics for Conservation Agriculture Research.
GCRF:CEPHaS - 加强保护性农业研究的环境物理、水文学和统计能力。
  • 批准号:
    NE/P02095X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 3.85万
  • 项目类别:
    Research Grant
Mapping complex biological processes across the landscape: the problem of non-stationarity
绘制整个景观中的复杂生物过程:非平稳性问题
  • 批准号:
    BB/E001599/1
  • 财政年份:
    2007
  • 资助金额:
    $ 3.85万
  • 项目类别:
    Research Grant

相似国自然基金

WASP家族蛋白WAVE2调节T细胞静息和活化的机制研究
  • 批准号:
    32300748
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
四阶奇异摄动Bi-wave问题各向异性网格有限元方法一致收敛性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
细胞骨架调节蛋白WAVE2维护免疫耐受及抑制自身免疫的机制研究
  • 批准号:
    32270940
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
WAVE1/KMT2A甲基化作用调控上皮性卵巢癌增殖转移的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
WAVE1 调控脓毒症免疫代谢反应的分子机制
  • 批准号:
    2021JJ31110
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
利用光学系统研究空间Rogue Wave的控制和预测
  • 批准号:
    12004282
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
WASp家族Verprolin同源蛋白WAVE2调节T细胞免疫稳态和抗原特异性免疫应答的机制研究
  • 批准号:
    31970841
  • 批准年份:
    2019
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
复微分方程的亚纯解和偏微分方程的rogue wave解
  • 批准号:
    11701382
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
植物SCAR/WAVE复合体与线粒体协同调节的自噬机制及其对柑橘果实品质的影响
  • 批准号:
    31772281
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
WAVE2调控SATB1促进Tfh细胞分化在系统性红斑狼疮发病机制中的研究
  • 批准号:
    81673058
  • 批准年份:
    2016
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目

相似海外基金

ISCF WAVE 1 AGRI TECH: Low cost sensors to reduce storage losses
ISCF WAVE 1 AGRI TECH:低成本传感器可减少存储损失
  • 批准号:
    BB/R021570/1
  • 财政年份:
    2018
  • 资助金额:
    $ 3.85万
  • 项目类别:
    Research Grant
ISCF WAVE 1 AGRI TECH - Sphagnum Farming UK - a sustainable alternative to peat in growing media
ISCF WAVE 1 AGRI TECH - 英国泥炭藓农业 - 生长介质中泥炭的可持续替代品
  • 批准号:
    BB/R021686/1
  • 财政年份:
    2018
  • 资助金额:
    $ 3.85万
  • 项目类别:
    Research Grant
ISCF WAVE 1 AGRI TECH: Sphagnum Farming UK - A Sustainable Alternative to Peat in Growing Media
ISCF WAVE 1 AGRI TECH:英国泥炭藓种植——种植介质中泥炭的可持续替代品
  • 批准号:
    BB/R021678/1
  • 财政年份:
    2018
  • 资助金额:
    $ 3.85万
  • 项目类别:
    Research Grant
ISCF WAVE 1 AGRI TECH Agronomic Big Data Analytics for improved crop management
ISCF WAVE 1 AGRI TECH 农艺大数据分析可改善作物管理
  • 批准号:
    BB/R02278X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 3.85万
  • 项目类别:
    Research Grant
ISCF WAVE 1 AGRI TECH - Innovative oxygen- and epigenetics-related assays and marker for Allium seed quality
ISCF WAVE 1 AGRI TECH - 创新的氧和表观遗传学相关测定和葱属种子质量标记
  • 批准号:
    BB/R021147/1
  • 财政年份:
    2018
  • 资助金额:
    $ 3.85万
  • 项目类别:
    Research Grant
ISCF WAVE 1 AGRI TECH: Low cost sensors to reduce storage losses
ISCF WAVE 1 AGRI TECH:低成本传感器可减少存储损失
  • 批准号:
    BB/R021597/1
  • 财政年份:
    2018
  • 资助金额:
    $ 3.85万
  • 项目类别:
    Research Grant
ISCF WAVE 1 AGRI TECH: Low cost sensors to reduce storage losses
ISCF WAVE 1 AGRI TECH:低成本传感器可减少存储损失
  • 批准号:
    BB/R021600/1
  • 财政年份:
    2018
  • 资助金额:
    $ 3.85万
  • 项目类别:
    Research Grant
ISCF WAVE 1 AGRI TECH_Animal WelfAir
ISCF WAVE 1 AGRI TECH_动物福利空气
  • 批准号:
    BB/R021511/1
  • 财政年份:
    2018
  • 资助金额:
    $ 3.85万
  • 项目类别:
    Research Grant
ISCF WAVE 1 AGRI TECH: Early Detection of Lameness in Dairy Cows through Multi-format Data Synthesis
ISCF WAVE 1 AGRI TECH:通过多格式数据合成早期检测奶牛跛行
  • 批准号:
    BB/R021538/1
  • 财政年份:
    2018
  • 资助金额:
    $ 3.85万
  • 项目类别:
    Research Grant
ISCF WAVE 1 AGRI TECH: Robochick: an automonous platform for data-collection in poultry sheds
ISCF WAVE 1 AGRI TECH:Robochick:用于家禽舍数据收集的自动化平台
  • 批准号:
    BB/R021589/1
  • 财政年份:
    2018
  • 资助金额:
    $ 3.85万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了