Mapping complex biological processes across the landscape: the problem of non-stationarity

绘制整个景观中的复杂生物过程:非平稳性问题

基本信息

  • 批准号:
    BB/E001599/1
  • 负责人:
  • 金额:
    $ 55.82万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

Many important processes happen in the landscape. For example, certain soil bacteria, denitrifiers, use nitrate in their respiration. One product of this is nitrous oxide, a gas with 270 times the impact of carbon dioxide on global warming. Management of farmland affects how much nitrous oxide is released. We must understand and measure these processes, but managed soils and vegetation are extremely variable. They vary at fine spatial scales (e.g. between adjacent clods of an apparently uniform soil) and at coarser scales (e.g. between the bottom of a slope and the top of a hill). But we must make predictions of variables in this complex system from relatively few observations. Scientists do this with methods called geostatistics. We assume that a variable over a region has arisen from a random process. We know that this is not true, of course, but we often make such assumptions: the number on a thrown die depends on Newton's laws of motion, but we can treat it as a random variable, here a number from 1 to 6 that cannot be predicted in advance, and all occur with equal probability. A die will not behave this well if it is not a perfect, uniform cube. We can estimate a better model for a real die if we throw it many times and record the numbers that turn up. In the geostatistical picture of variation, we think of our data, obtained at a set of sites, as numbers obtained by throwing a die. The only complication of the model is that the numbers on two dice thrown at sites near to each other are more likely to be similar than on two dice at sites that are further apart. This is called spatial dependence and geostatistics requires that we can describe it. This is not simple; for any two sites a and b we only have one observation at each, and from this we can make no statements about their joint variation. The solution is to assume that the variation between two observations of a variable separated by some distance (e.g. 10m) in one part of the landscape, and the variation between another two observations 10m apart are, as it were, duplicate information about the variability in space. In this way we build up a model of the spatial dependence, called the variogram, but it depends on this assumption of an underlying process for which the variation between two sites depends only on how far apart they are, not on where they are. This is called stationarity of the variance. This assumption is often unrealistic in the landscape. The variability of a process like denitrification in a wet low-lying area with peaty patches in the soil will be much greater than than in a well-drained, cultivated arable field. The variability of soil pH over short distances may be larger in mixed sediments at the bottom of a slope than on an old eroded land surface. The aim of this project is to develop geostatistical methods to deal with such variation. Our idea is to treat the spatial dependence as a mathematical function of spatial position, adding some extra parameters to the model of spatial dependence. We believe that, while this won't remove assumptions from our analysis, the assumptions will be more plausible than stationarity. As well as developing new models of spatial dependence we shall develop exploratory methods to decide when more complex spatial models are needed, and to help design them for particular problems. We shall also investigate how our scientific knowledge of processes, described mathematically, can be used to help predict them when the variation is complex. We shall test and demonstrate these methods using new data on the rates of nitrous oxide emissions from soils in complex farmed landscapes with many very different land uses. This important variable will vary in a complex way, so that stationarity cannot be assumed with confidence. If successful this project will provide tools to study and predict many different complex variables such as soil biodiversity and pollution.
许多重要的过程发生在景观中。例如,某些土壤细菌,微生物,在呼吸中使用硝酸盐。其中一个产品是一氧化二氮,这种气体对全球变暖的影响是二氧化碳的270倍。农田的管理影响着一氧化二氮的释放量。我们必须了解和测量这些过程,但管理的土壤和植被是非常可变的。它们在精细的空间尺度上(例如,在表面上均匀的土壤的相邻土块之间)和在较粗的尺度上(例如,在斜坡底部和山顶之间)变化。但是,我们必须根据相对较少的观测结果来预测这个复杂系统中的变量。科学家们用一种叫做地质统计学的方法来做这件事。我们假设一个区域上的变量是由随机过程产生的。当然,我们知道这是不正确的,但我们经常做这样的假设:掷出的骰子上的数字取决于牛顿运动定律,但我们可以把它当作一个随机变量,这里是一个从1到6的数字,不能提前预测,并且所有的数字都以相等的概率出现。如果一个骰子不是一个完美的、均匀的立方体,它就不会表现得这么好。如果我们掷多次骰子,并记录下掷出的数字,我们就可以估算出一个更好的真实的骰子模型。在变异的地质统计学图景中,我们认为我们的数据是在一组地点获得的,是掷骰子获得的数字。该模型唯一的复杂之处在于,在两个相距较近的地点掷出的两个骰子上的数字比在两个相距较远的地点掷出的两个骰子上的数字更有可能相似。这就是所谓的空间相关性,地质统计学要求我们能够描述它,但这并不简单;对于任意两个地点a和B,我们在每个地点只有一个观测值,因此我们无法对它们的联合变化做出任何声明。解决办法是假设在景观的一部分中,相隔一定距离(例如10米)的两个变量观测值之间的变化,以及相隔10米的另外两个观测值之间的变化,可以说是关于空间变化的重复信息。通过这种方式,我们建立了一个空间依赖性模型,称为变差函数,但它依赖于一个潜在过程的假设,即两个地点之间的变化只取决于它们相距多远,而不是它们在哪里。这被称为方差的平稳性。这种假设在景观中往往是不现实的。在土壤中有泥炭斑块的潮湿低洼地区,反硝化过程的可变性比排水良好的耕地要大得多。在斜坡底部的混合沉积物中,土壤pH值在短距离内的变异性可能大于老的侵蚀地表。该项目的目的是开发地质统计学方法来处理这种变化。我们的想法是把空间依赖性看作是空间位置的数学函数,在空间依赖性模型中加入一些额外的参数。我们相信,虽然这不会从我们的分析中删除假设,但这些假设将比平稳性更合理。除了开发新的空间依赖模型外,我们还将开发探索性的方法来决定何时需要更复杂的空间模型,并帮助设计它们以解决特定问题。我们还将研究如何利用我们的数学描述的过程的科学知识来帮助预测复杂的变化。我们将测试和证明这些方法使用新的数据在复杂的农业景观与许多非常不同的土地使用的土壤中的一氧化二氮的排放率。这个重要的变量将以复杂的方式变化,因此不能有信心地假设平稳性。如果成功,该项目将提供研究和预测土壤生物多样性和污染等许多不同复杂变量的工具。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A linear mixed model, with non-stationary mean and covariance, for soil potassium based on gamma radiometry
  • DOI:
    10.5194/bg-7-2081-2010
  • 发表时间:
    2010-07
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    K. Haskard;B. Rawlins;R. Lark
  • 通讯作者:
    K. Haskard;B. Rawlins;R. Lark
Wavelet analysis of the variability of nitrous oxide emissions from soil at decameter to kilometer scales.
对十米到千米尺度土壤一氧化二氮排放变化的小波分析。
Spectral tempering to model non-stationary covariance of nitrous oxide emissions from soil using continuous or categorical explanatory variables at a landscape scale
使用景观尺度的连续或分类解释变量对土壤一氧化二氮排放的非平稳协方差进行光谱调节
  • DOI:
    10.1016/j.geoderma.2010.08.012
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Haskard K
  • 通讯作者:
    Haskard K
Wavelet analysis of the correlations between soil properties and potential nitrous oxide emission at farm and landscape scales
  • DOI:
    10.1111/j.1365-2389.2011.01361.x
  • 发表时间:
    2011-06-01
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Milne, A. E.;Haskard, K. A.;Lark, R. M.
  • 通讯作者:
    Lark, R. M.
Modelling non-stationary variance of soil properties by tempering an empirical spectrum
  • DOI:
    10.1016/j.geoderma.2009.07.006
  • 发表时间:
    2009-10
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    K. Haskard;R. Lark
  • 通讯作者:
    K. Haskard;R. Lark
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Lark其他文献

Richard Lark的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Lark', 18)}}的其他基金

21EJP SOIL: CropGas: The effect of conservation agriculture interventions on greenhouse gas emissions
21EJP 土壤:农作物气体:保护性农业干预措施对温室气体排放的影响
  • 批准号:
    BB/X002942/1
  • 财政年份:
    2022
  • 资助金额:
    $ 55.82万
  • 项目类别:
    Research Grant
Towards transdisciplinary understanding of inherited soil surveys: an exploratory case study in Zambia.
对继承土壤调查的跨学科理解:赞比亚的探索性案例研究。
  • 批准号:
    AH/T00410X/1
  • 财政年份:
    2019
  • 资助金额:
    $ 55.82万
  • 项目类别:
    Research Grant
ISCF WAVE 1 AGRI TECH Agronomic Big Data Analytics for improved crop management
ISCF WAVE 1 AGRI TECH 农艺大数据分析可改善作物管理
  • 批准号:
    BB/R022798/1
  • 财政年份:
    2018
  • 资助金额:
    $ 55.82万
  • 项目类别:
    Research Grant
Plant-based controls on soil structural dynamics: elucidating the interactive roles of the genotype, phenotype and soil microbial community
基于植物的土壤结构动力学控制:阐明基因型、表型和土壤微生物群落的相互作用
  • 批准号:
    BB/N015614/2
  • 财政年份:
    2018
  • 资助金额:
    $ 55.82万
  • 项目类别:
    Research Grant
Plant-based controls on soil structural dynamics: elucidating the interactive roles of the genotype, phenotype and soil microbial community
基于植物的土壤结构动力学控制:阐明基因型、表型和土壤微生物群落的相互作用
  • 批准号:
    BB/N015614/1
  • 财政年份:
    2017
  • 资助金额:
    $ 55.82万
  • 项目类别:
    Research Grant
Real-time in situ sensing of soil nitrogen status to promote enhanced nitrogen use efficiency in agricultural systems
实时原位传感土壤氮状况,促进提高农业系统氮利用效率
  • 批准号:
    BB/P004431/1
  • 财政年份:
    2017
  • 资助金额:
    $ 55.82万
  • 项目类别:
    Research Grant
Real-time in situ sensing of soil nitrogen status to promote enhanced nitrogen use efficiency in agricultural systems
实时原位传感土壤氮状况,促进提高农业系统氮利用效率
  • 批准号:
    BB/P004431/2
  • 财政年份:
    2017
  • 资助金额:
    $ 55.82万
  • 项目类别:
    Research Grant
GCRF: CEPHaS - Strengthening Capacity in Environmental Physics, Hydrology and Statistics for Conservation Agriculture Research.
GCRF:CEPHaS - 加强保护性农业研究的环境物理、水文学和统计能力。
  • 批准号:
    NE/P02095X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 55.82万
  • 项目类别:
    Research Grant

相似国自然基金

TPLATE Complex通过胞吞调控CLV3-CLAVATA多肽信号模块维持干细胞稳态的分子机制研究
  • 批准号:
    32370337
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
二甲双胍对于模型蛋白、γ-secretase、Complex I自由能曲面的影响
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高脂饮食损伤巨噬细胞ndufs4表达激活Complex I/mROS/HIF-1通路参与溃疡性结肠炎研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用新型 pH 荧光探针研究 Syntaxin 12/13 介导的多种细胞器互作
  • 批准号:
    92054103
  • 批准年份:
    2020
  • 资助金额:
    87.0 万元
  • 项目类别:
    重大研究计划
S-棕榈酰化新型修饰在细胞自噬中的功能和机制研究
  • 批准号:
    31970693
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
核孔复合体调控细胞核/叶绿体信号交流分子机制的研究
  • 批准号:
    31970656
  • 批准年份:
    2019
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
m6A甲基化酶ZCCHC4结合EIF3复合物调节翻译的机制研究
  • 批准号:
    31971330
  • 批准年份:
    2019
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
线粒体参与呼吸中枢pre-Bötzinger complex呼吸可塑性调控的机制研究
  • 批准号:
    31971055
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
北温带中华蹄盖蕨复合体Athyrium sinense complex的物种分化
  • 批准号:
    31872651
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
细胞不对称分裂时PAR-3/PAR-6复合物极性聚集的分子机制研究
  • 批准号:
    31871394
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

A democratized platform for mapping the spatial epigenome in tissue
用于绘制组织空间表观基因组图谱的民主化平台
  • 批准号:
    10822023
  • 财政年份:
    2023
  • 资助金额:
    $ 55.82万
  • 项目类别:
High resolution genomic and epigenomic mapping of the human salivary gland
人类唾液腺的高分辨率基因组和表观基因组图谱
  • 批准号:
    10727190
  • 财政年份:
    2023
  • 资助金额:
    $ 55.82万
  • 项目类别:
Mapping proximal and distal splicing-regulatory elements
绘制近端和远端剪接调控元件
  • 批准号:
    10658516
  • 财政年份:
    2023
  • 资助金额:
    $ 55.82万
  • 项目类别:
Under Pressure: Biophysical Mapping of Herpesvirus Capsid Assembly and Genome Packaging
压力之下:疱疹病毒衣壳组装和基因组包装的生物物理图谱
  • 批准号:
    10685823
  • 财政年份:
    2023
  • 资助金额:
    $ 55.82万
  • 项目类别:
Mapping functional brain connectivity, neurodevelopment, and imaging-genetic associations in individuals with genetic and clinical risk factors for neuropsychiatric illness
绘制具有神经精神疾病遗传和临床危险因素的个体的功能性大脑连接、神经发育和成像-遗传关联
  • 批准号:
    10678553
  • 财政年份:
    2023
  • 资助金额:
    $ 55.82万
  • 项目类别:
Admixture Mapping of Coronary Heart Disease and Associated Metabolomic Markers in African Americans
非裔美国人冠心病和相关代谢组标记物的混合图谱
  • 批准号:
    10571022
  • 财政年份:
    2023
  • 资助金额:
    $ 55.82万
  • 项目类别:
Decoding the Interferome by Mapping Genetic Interactions in Human Tissue
通过绘制人体组织中的遗传相互作用来解码干扰素
  • 批准号:
    10725446
  • 财政年份:
    2023
  • 资助金额:
    $ 55.82万
  • 项目类别:
Precision-Mapping Functional Connectivity in Parkinson's Disease
精确绘制帕金森病的功能连接图
  • 批准号:
    10583322
  • 财政年份:
    2023
  • 资助金额:
    $ 55.82万
  • 项目类别:
Mapping tumor specific immunopeptidome for antibody-based targeted therapy
绘制肿瘤特异性免疫肽组用于基于抗体的靶向治疗
  • 批准号:
    10604941
  • 财政年份:
    2023
  • 资助金额:
    $ 55.82万
  • 项目类别:
Three-dimensional Confocal Microscopy Visualization and AFM-IR Chemical Mapping of Lung Surfactant Monolayer Collapse Morphologies
肺表面活性剂单层塌陷形态的三维共焦显微镜可视化和 AFM-IR 化学图谱
  • 批准号:
    10751972
  • 财政年份:
    2023
  • 资助金额:
    $ 55.82万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了