CCP4 Advanced integrated approaches to macromolecular structure determination
CCP4 大分子结构测定的先进综合方法
基本信息
- 批准号:BB/S006974/1
- 负责人:
- 金额:$ 4.49万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proteins, DNA and RNA are the active machines of the cells which make up living organisms, and are collectively known as macromolecules. They carry out all of the functions that sustain life, from metabolism through replication to the exchange of information between a cell and its environment. They are coded for by a 'blueprint' in the form of the DNA sequence in the genome, which describes how to make them as linear strings of building blocks. In order to function, however, most macromolecules fold into a precise 3D structure, which in turn depends primarily on the sequence of building blocks from which they are made. Knowledge of the molecule's 3D structure allows us both to understand its function, and to design chemicals to interfere with it. Due to advances in molecular biology, a number of projects, including the Human Genome Project, have led to the determination of the complete DNA sequences of many organisms, from which we can now read the linear blueprints for many macromolecules. As yet, however, the 3D structure cannot be predicted from knowledge of the sequence alone. One way to "see" macromolecules, and so to determine their 3D structure, involves initially crystallising the molecule under investigation, and subsequently imaging it with suitable radiation. Macromolecules are too small to see with normal light, and so a different approach is required. With an optical microscope we cannot see objects which are smaller than the wavelength of light, roughly 1 millionth of a metre: Atoms are about 1000 times smaller than this. However X-rays have a wavelength about the same as the size of the atoms. For this reason, in order to resolve the atomic detail of macromolecular structure, we image them with X-rays rather than with visible light.The process of imaging the structures of macromolecules that have been crystallised is known as X-ray crystallography. X- ray crystallography is like using a microscope to magnify objects that are too small to be seen with visible light. Unfortunately X-ray crystallography is complicated because, unlike a microscope, there is no lens system for X-rays and so additional information and complex computation are required to reconstruct the final image. This information may come from known protein structures using the Molecular Replacement (MR) method, or from other sources including Electron Microscopy (EM). Once the structure is known, it is easier to pinpoint how macromolecules contribute to the living cellular machinery. Pharmaceutical research uses this as the basis for designing drugs to turn the molecules on or off when required. Drugs are designed to interact with the target molecule to either block or promote the chemical processes which they perform within the body. Other applications include protein engineering and carbohydrate engineering. The aim of this project is to improve the key computational tools needed to extract a 3D structure from X-ray and electron diffraction experiments. It will provide continuing support to a Collaborative Computing Project (CCP4 first established in 1979), which has become one of the leading sources of software for this task. The project will help efficient and effective use to be made of the synchrotrons that make the X-rays that are used in most crystallographic experiments but also extend to use of electron microscopes which have gained much recent publicity with the Nobel prize being awarded to researchers from this field. It will provide more powerful tools to allow users to exploit information from known protein structures when the match to the unknown structure is very poor. Finally, it will allow structures to be solved, even when poor quality and very small crystals are obtained.
蛋白质、DNA和RNA是构成生物体的细胞的活性机器,统称为大分子。它们执行维持生命的所有功能,从新陈代谢到复制,再到细胞与环境之间的信息交换。它们是由基因组中DNA序列形式的“蓝图”编码的,该蓝图描述了如何使它们成为构建模块的线性字符串。然而,为了发挥作用,大多数大分子折叠成精确的3D结构,这反过来又主要取决于制造它们的构建块的序列。分子的三维结构使我们能够了解其功能,并设计化学物质来干扰它。由于分子生物学的进步,许多项目,包括人类基因组计划,已经导致确定了许多生物体的完整DNA序列,我们现在可以从中阅读许多大分子的线性蓝图。然而,到目前为止,3D结构不能仅从序列的知识来预测。一种“看到”大分子并因此确定其3D结构的方法包括首先使所研究的分子结晶,然后用合适的辐射对其成像。大分子太小,用普通光看不到,所以需要一种不同的方法。用光学显微镜,我们不能看到比光波长小的物体,大约是百万分之一米:原子比这个小1000倍。然而,X射线的波长大约与原子的大小相同。因此,为了解析大分子结构的原子细节,我们用X射线而不是可见光对其成像。对已结晶的大分子结构成像的过程被称为X射线晶体学。X射线晶体学就像是用显微镜来放大那些太小而用可见光看不见的物体。不幸的是,X射线晶体学是复杂的,因为与显微镜不同,X射线没有透镜系统,因此需要额外的信息和复杂的计算来重建最终的图像。这些信息可能来自使用分子置换(MR)方法的已知蛋白质结构,或来自其他来源,包括电子显微镜(EM)。一旦知道了结构,就更容易确定大分子是如何对活细胞机制做出贡献的。药物研究将此作为设计药物的基础,以便在需要时打开或关闭分子。药物被设计为与靶分子相互作用,以阻止或促进它们在体内执行的化学过程。其他应用包括蛋白质工程和碳水化合物工程。该项目的目的是改进从X射线和电子衍射实验中提取3D结构所需的关键计算工具。它将继续支持协作计算项目(1979年首次建立的CCP4),该项目已成为这项任务的主要软件来源之一。该项目将有助于高效和有效地利用同步加速器,使大多数晶体学实验中使用的X射线,而且还扩展到电子显微镜的使用,电子显微镜最近获得了很多宣传,诺贝尔奖被授予该领域的研究人员。它将提供更强大的工具,允许用户在与未知结构的匹配非常差时利用已知蛋白质结构的信息。最后,它将允许解决结构,即使当获得质量差和非常小的晶体。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CCP4 Cloud for structure determination and project management in macromolecular crystallography.
- DOI:10.1107/s2059798322007987
- 发表时间:2022-09-01
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Cowtan其他文献
Kevin Cowtan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Cowtan', 18)}}的其他基金
A macromolecular structure building toolkit for machine learning and cloud applications
用于机器学习和云应用的大分子结构构建工具包
- 批准号:
BB/X006492/1 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别:
Research Grant
Flexible-body refinement for Cryogenic Electron Microscopy Applications
低温电子显微镜应用的柔性体改进
- 批准号:
BB/T012935/1 - 财政年份:2020
- 资助金额:
$ 4.49万 - 项目类别:
Research Grant
CCP4 Advanced integrated approaches to macromolecular structure determination
CCP4 大分子结构测定的先进综合方法
- 批准号:
BB/S006974/2 - 财政年份:2019
- 资助金额:
$ 4.49万 - 项目类别:
Research Grant
Global Surface Air Temperature (GloSAT)
全球表面气温 (GloSAT)
- 批准号:
NE/S015566/1 - 财政年份:2019
- 资助金额:
$ 4.49万 - 项目类别:
Research Grant
CCP4 Advanced integrated approaches to macromolecular structure determination
CCP4 大分子结构测定的先进综合方法
- 批准号:
BB/S005099/1 - 财政年份:2019
- 资助金额:
$ 4.49万 - 项目类别:
Research Grant
Automated de novo building of protein models into electron microscopy maps
自动将蛋白质模型从头构建到电子显微镜图谱中
- 批准号:
BB/P000517/1 - 财政年份:2017
- 资助金额:
$ 4.49万 - 项目类别:
Research Grant
CCP4 Grant Renewal 2014-2019: Question-driven crystallographic data collection and advanced structure solution
CCP4 资助续签 2014-2019:问题驱动的晶体学数据收集和高级结构解决方案
- 批准号:
BB/L006383/1 - 财政年份:2015
- 资助金额:
$ 4.49万 - 项目类别:
Research Grant
相似国自然基金
面向用户体验的IMT-Advanced系统跨层无线资源分配技术研究
- 批准号:61201232
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
LTE-Advanced中继网络关键技术研究
- 批准号:61171096
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
IMT-Advanced协作中继网络中的网络编码研究
- 批准号:61040005
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
面向IMT-Advanced的移动组播关键技术研究
- 批准号:61001071
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于干扰预测的IMT-Advanced多小区干扰抑制技术研究
- 批准号:61001116
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SUNRISE: Safe and sUstainable by desigN: IntegRated approaches for Impact aSsessment of advanced matErials
SUNRISE:安全且可持续的设计:先进材料影响评估的综合方法
- 批准号:
10103630 - 财政年份:2024
- 资助金额:
$ 4.49万 - 项目类别:
EU-Funded
An advanced Platform for INtegrated Quantum photonics devices (PINQ)
集成量子光子器件的先进平台 (PINQ)
- 批准号:
EP/Y003837/1 - 财政年份:2024
- 资助金额:
$ 4.49万 - 项目类别:
Fellowship
iCare - Integrated assessment and Advanced Characterisation of Neuro-Nanotoxicity
iCare - 神经纳米毒性的综合评估和高级表征
- 批准号:
10068965 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别:
EU-Funded
Integrated assessment and Advanced Characterisation of Neuro-Nanotoxicity
神经纳米毒性的综合评估和高级表征
- 批准号:
10069445 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别:
EU-Funded
Development and application of compound semiconductor monolithic advanced unitary conversion photonic integrated circuits
化合物半导体单片先进单一转换光子集成电路的开发与应用
- 批准号:
23H00272 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Collaborative Research: Advanced and Highly Integrated Power Conversion Systems for Grid Stability and Resiliency
合作研究:先进且高度集成的电力转换系统,以实现电网稳定性和弹性
- 批准号:
2403660 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别:
Standard Grant
Collaborative Research: GEO OSE Track 1: Advanced cloud-based Data- and Visualization-Integrated Simulation EnviRonment (ADVISER) to Advance Computational Glaciology
合作研究:GEO OSE Track 1:先进的基于云的数据和可视化集成模拟环境 (ADVISER),以推进计算冰川学
- 批准号:
2324737 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别:
Standard Grant
Northeast Consortia for Advanced Integrated Silicon Technologies
东北先进集成硅技术联盟
- 批准号:
2301184 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别:
Standard Grant
Collaborative Research: GEO OSE Track 1: Advanced cloud-based Data- and Visualization-Integrated Simulation EnviRonment (ADVISER) to Advance Computational Glaciology
合作研究:GEO OSE Track 1:先进的基于云的数据和可视化集成模拟环境 (ADVISER),以推进计算冰川学
- 批准号:
2324735 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别:
Standard Grant
FuSe-TG: Advanced Device and System Opportunities for future Neuromorphic Integrated Circuits (NICs) and Their Applications
FuSe-TG:未来神经形态集成电路 (NIC) 及其应用的先进设备和系统机会
- 批准号:
2235411 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别:
Standard Grant