Concealing 3D objects

隐藏 3D 对象

基本信息

  • 批准号:
    BB/S00873X/1
  • 负责人:
  • 金额:
    $ 94.21万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Camouflage is not just an adaptation to the physical environment, but to the perception and mind of the viewer. Billions of photons enter the eye every second, so vision reduces the information to only that which is normally useful. Because shortcuts are taken, sensory systems can be manipulated, and this is what camouflage does. Perceived differences in colour and texture are minimised, distinctive features are concealed, false edges are created and the cues the brain uses to group features into recognisable objects are disrupted. Therefore the study of animal camouflage gives us insights to how other species see the world, as well as an explanation for much of the diversity of animal colour and form that we see around us.Studying animal camouflage therefore has to be fundamentally interdisciplinary, bringing together concepts and tools from evolutionary and developmental biology, perceptual psychology and computer vision. This multi-pronged attack has, in the last decade, transformed our understanding, showing experimentally that specific mechanisms of concealment and disguise, many first postulated in the late 19th century, can work against animals with different visual systems from our own. But this evidence comes from either observational studies or experiments with artificial prey that (appropriately, given the aims) isolate specific mechanisms. What we can't do is point to a real animal and explain its colour pattern.Consider these issues. Cat species with spotty coats tend to live in forests and/or rest in trees; this suggests that spots are good camouflage in dappled lighting. Humans, at least, do indeed find them hard to detect. Are the different spot patterns of leopard, ocelot and jaguar equally good solutions for such habitats, differing only because of chance effects during their separate evolutionary histories? Or do the different spot patterns represent solutions to subtle differences in the habitats they occupy? Furthermore, are these patterns the optimal camouflage for animals of these sizes in these habitats, or are there other constraints or trade-offs at play? The reason we have not answered such questions (very general ones in evolutionary biology, about what constitutes evolutionary design or historical constraint) are threefold. First, we have not, until recently, had adequate ways of describing the patterns on animals, or backgrounds, as they would be represented in the brains of other species. Second, such modelling as has been attempted has only been applied to two-dimensional patterns (i.e. 'flat' animals or flat samples of a pattern). Third, we do not have equivalent data for the backgrounds against which animals might be seen (and at all relevant viewing angles). This grant proposal rectifies these shortfalls by applying novel computational methods ('deep learning' of the sort used by Google and their like) across three sub-projects, with different challenges and with different applications. All tackle long-standing, but unanswered, questions about the adaptive value of colour. Furthermore, the results will have direct application in the human domain.We have chosen three specific experimental systems - snails, cats and humans - because all have a solid background of research on which to build, but the colours operate at different spatial scales, against different viewers and, importantly, with different mechanisms for generating the patterns. All present new opportunities for a new, integrated approach to studying coloration and the interaction between pattern development and evolutionary function.Our research will also deliver a computational toolkit, and method, that can determine the best (or worst) camouflage for any object in any environment for any viewer (different species or, indeed, machine vision). This should prove useful not only for concealment, but the study of conspicuousness, in biology, advertising, warning signage, protective clothing and other applications.
摄影不仅仅是对物理环境的适应,也是对观众的感知和心灵的适应。每秒钟都有数十亿的光子进入眼睛,因此视觉将信息减少到只有正常有用的信息。因为走捷径,感觉系统可以被操纵,这就是伪装的作用。颜色和纹理的感知差异被最小化,独特的特征被隐藏,虚假的边缘被创建,大脑用于将特征分组为可识别对象的线索被破坏。因此,对动物伪装的研究让我们了解到其他物种是如何看待世界的,也解释了我们周围动物的颜色和形态的多样性。因此,研究动物伪装必须从根本上是跨学科的,将进化和发育生物学、感知心理学和计算机视觉的概念和工具结合在一起。在过去的十年里,这种多管齐下的攻击改变了我们的理解,实验表明,隐藏和伪装的特定机制,许多在世纪后期首次提出,可以对具有与我们不同视觉系统的动物起作用。但这些证据要么来自观察性研究,要么来自人工猎物的实验,这些实验(适当地,考虑到目的)隔离了特定的机制。我们不能指出一个真实的动物并解释它的颜色模式。有斑点的猫科动物倾向于生活在森林中和/或在树上休息;这表明斑点在斑驳的灯光下是很好的伪装。至少人类确实发现它们很难被发现。豹、虎猫和美洲虎的不同斑点模式是否同样适合这些栖息地,只是因为它们各自进化历史中的偶然影响而不同?或者不同的斑点图案代表了它们所占据的栖息地的微妙差异的解决方案?此外,这些图案是这些栖息地中这些大小的动物的最佳伪装,还是有其他限制或权衡?我们没有回答这些问题(进化生物学中非常普遍的问题,关于什么构成进化设计或历史约束)的原因有三个。首先,直到最近,我们才有足够的方法来描述动物或背景上的模式,因为它们会在其他物种的大脑中表现出来。第二,已经尝试的这种建模仅应用于二维模式(即“扁平”动物或模式的扁平样本)。第三,我们没有关于动物可能被看到的背景(以及所有相关视角)的等效数据。这项拨款提案通过在三个子项目中应用新的计算方法(Google等使用的“深度学习”)来弥补这些不足,这些子项目具有不同的挑战和不同的应用程序。所有这些都解决了关于颜色适应价值的长期存在但未得到解答的问题。我们选择了三个特定的实验系统--蜗牛、猫和人类--因为它们都有坚实的研究背景,但颜色在不同的空间尺度上起作用,针对不同的观察者,更重要的是,产生图案的机制不同。所有这些都为研究着色以及图案发展和进化功能之间的相互作用提供了新的综合方法。我们的研究还将提供一个计算工具包和方法,可以为任何观察者(不同物种或机器视觉)确定任何环境中任何物体的最佳(或最差)伪装。这应该证明不仅对隐藏有用,而且对生物学、广告、警告标志、防护服和其他应用中的显著性研究有用。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dazzle: surface patterns that impede interception
眩目:阻碍拦截的表面图案
Supplementary Material for Rowe et al. "Background complexity can mitigate poor camouflage".
Rowe 等人的补充材料。
  • DOI:
    10.6084/m9.figshare.17004594
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rowe Z
  • 通讯作者:
    Rowe Z
Background complexity can mitigate poor camouflage.
背景复杂性可以减轻伪装效果差的情况。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Innes Cuthill其他文献

Manipulation of sex differences in parental care
  • DOI:
    10.1007/bf00302916
  • 发表时间:
    1989-09-01
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Jonathan Wright;Innes Cuthill
  • 通讯作者:
    Innes Cuthill

Innes Cuthill的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Innes Cuthill', 18)}}的其他基金

What makes an effective warning signal?
什么是有效的警告信号?
  • 批准号:
    BB/N007239/1
  • 财政年份:
    2016
  • 资助金额:
    $ 94.21万
  • 项目类别:
    Research Grant
Counter shaded animal patterns: from photons to form
反阴影动物图案:从光子到形态
  • 批准号:
    BB/J002372/1
  • 财政年份:
    2012
  • 资助金额:
    $ 94.21万
  • 项目类别:
    Research Grant
Doctoral Training Grant (DTG) to provide funding for 1 PhD studentship.
博士培训补助金 (DTG) 为 1 名博士生提供资助。
  • 批准号:
    NE/H525097/1
  • 财政年份:
    2009
  • 资助金额:
    $ 94.21万
  • 项目类别:
    Training Grant
The computational neuroscience of animal camouflage
动物伪装的计算神经科学
  • 批准号:
    BB/E02100X/1
  • 财政年份:
    2007
  • 资助金额:
    $ 94.21万
  • 项目类别:
    Research Grant

相似国自然基金

锰酸锂基复合气凝胶的3D打印构筑及其提锂机制研究
  • 批准号:
    JCZRLH202500778
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
3D打印楔形梯度多孔支架的优化构建及促进HTO术后骨再生修复的实验研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于3D Slicer的颅内动脉瘤破裂风险评估机器学习模型开发及临床推广应用
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
智能3D超微血管成像联合实时剪切波弹性评估胎盘功能对高血压孕妇子痫前期的预测效能分析
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
3D打印PH-GBS@CCP复合支架诱导骨肉瘤铜死亡及增效抗PD-1治疗的作用机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
双重固化3D打印连续纤维C/C复合材料成型与渗碳致密化机理研究
  • 批准号:
    2025JJ60269
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
载椎体骨髓干细胞外泌体3D打印n-HA/PA66生物支架的研制及促脊柱融合机制研究
  • 批准号:
    2025JJ80409
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于微流控技术的3D细胞培养体系构建及在乳腺癌耐药机制中应用研究
  • 批准号:
    2025JJ70487
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Connections between sound composition and visual art through the transformation of sound material into 3D objects and sonic spaces
通过将声音材料转换为 3D 对象和声音空间,声音创作与视觉艺术之间的联系
  • 批准号:
    2893455
  • 财政年份:
    2023
  • 资助金额:
    $ 94.21万
  • 项目类别:
    Studentship
Equipment: MRI: Track 2 Acquisition of a Novel Performance-Driven 3D Imaging System for Extremely Noisy Objects (NPIX)
设备: MRI:第 2 道采购新型性能驱动的 3D 成像系统,用于极噪物体 (NPIX)
  • 批准号:
    2319708
  • 财政年份:
    2023
  • 资助金额:
    $ 94.21万
  • 项目类别:
    Continuing Grant
ScAnt - an open-source platform for the creation of 3D models of arthropods (and other small objects)
ScAnt - 用于创建节肢动物(和其他小物体)3D 模型的开源平台
  • 批准号:
    EP/X032302/1
  • 财政年份:
    2023
  • 资助金额:
    $ 94.21万
  • 项目类别:
    Research Grant
Replicating Dynamic Objects without Explicit 3D Reconstruction
无需显式 3D 重建即可复制动态对象
  • 批准号:
    23KJ0284
  • 财政年份:
    2023
  • 资助金额:
    $ 94.21万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Generating Usable 3D Objects via Deep Learning
通过深度学习生成可用的 3D 对象
  • 批准号:
    DGECR-2022-00359
  • 财政年份:
    2022
  • 资助金额:
    $ 94.21万
  • 项目类别:
    Discovery Launch Supplement
SaTC: CORE: Small: Forensic Coding: Robust Information Embedding in 3D Printed Objects.
SaTC:核心:小型:取证编码:在 3D 打印对象中嵌入强大的信息。
  • 批准号:
    2223032
  • 财政年份:
    2022
  • 资助金额:
    $ 94.21万
  • 项目类别:
    Standard Grant
Generating Usable 3D Objects via Deep Learning
通过深度学习生成可用的 3D 对象
  • 批准号:
    RGPIN-2022-03111
  • 财政年份:
    2022
  • 资助金额:
    $ 94.21万
  • 项目类别:
    Discovery Grants Program - Individual
Characterizing Human Spatial Thinking When Designing 3D Objects.
设计 3D 对象时表征人类空间思维。
  • 批准号:
    RGPIN-2022-03865
  • 财政年份:
    2022
  • 资助金额:
    $ 94.21万
  • 项目类别:
    Discovery Grants Program - Individual
Diffusion models for Single-image 3D reconstruction of deformable objects.
用于可变形物体的单图像 3D 重建的扩散模型。
  • 批准号:
    2711334
  • 财政年份:
    2022
  • 资助金额:
    $ 94.21万
  • 项目类别:
    Studentship
Multisensory measurement, representation and integration of 3D rigid and deformable objects in interactive applications
交互式应用中 3D 刚性和可变形物体的多感官测量、表示和集成
  • 批准号:
    DDG-2020-00045
  • 财政年份:
    2022
  • 资助金额:
    $ 94.21万
  • 项目类别:
    Discovery Development Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了