Exploiting the self-regulatory circuit of nitrate assimilation in plants for improved nitrogen use efficiency and crop sustainability.
利用植物硝酸盐同化的自我调节回路来提高氮利用效率和作物可持续性。
基本信息
- 批准号:BB/S010262/1
- 负责人:
- 金额:$ 38.7万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Food and Agriculture Organization of the United Nations projects that in the next 30-40 years the world will be one third more populous. This increase in the global population will put extraordinary pressure on agricultural systems. A concurrent boost in agricultural production will be required to meet already overburdened food, fiber and fuel demands. However, for major cropping systems, the actual average yield range between 20% and 80% of potential. Thus, the development of new strategies to reduce the yield gap is of great economic and social importance. Currently, crop productivity relies heavily on the use of commercial fertilizers, with attributable yield percentage reaching values as high as 90%. Particularly, supply of the inorganic ion nitrate, the primary source of nitrogen for land plants, represents a major bottleneck in crop yield. Due to its high mobility in water, nitrate ions are often runoff from the soil, eventually leading to environmental impact. Thus, current fertilization strategies often offer limited efficacy and are potentially hazardous to human health and the environment, while still leading to economic losses of billions every year. Conversely, genetic and biochemical improvement of plant primary metabolism represents a safe and sustainable alternative to increasing crop yield while making more efficient use of natural resources. To cope with fluctuations in its availability in time and space, plants have evolved the ability to modulate nitrate acquisition according to their N status and nitrate concentration in soil. Plants actively transport nitrate across the plasma membrane of the roots through the sophisticated transport systems. Under limiting availability, nitrate acquisition relies on high-affinity transporters, which recruitment and activity in response to nitrate is mediated by post-translational modifications. Once taken up by roots, nitrate is mainly transported to shoots for further incorporation of N atoms into carbon skeleton through sequential assimilatory reactions to form N-containing organic molecules, such as amino acids, proteins and nucleotides. As one of the most energy-consuming biochemical pathways in nature, nitrate assimilation is tightly controlled to ensure proper plant development and growth. Several lines of evidence indicate that flux in nitrate assimilation pathway is associated with production of reactive nitrogen species. Particularly, we have recently shown that the redox active molecule nitric oxide (NO), one of the end products of nitrogen metabolism, feedback regulates flux through nitrate assimilation pathway. NO bioactivity is mediated mainly through the protein post-translational modification S-nitrosylation, i.e. the covalent attachment of a NO moiety form protein-SNO. Our findings revealed that intracellular protein-SNO accumulation is associated with reduced expression of the nitrate transporters and inhibition of assimilatory reactions. Thus, a feedback loop mechanism associated with nitrate assimilation limits nutrient assimilation in plants. Remarkably, genetic manipulation of protein-SNO levels markedly impacted plant vigour, suggesting that this feedback mechanism can be harnessed to improve plant productivity. It remains unclear, however, the identity of the redox-responsive nodes in nitrogen assimilation pathway and how they operate to control plant fitness. Here I propose to use a innovative, genetic, genomic and inter-disciplinary imaging techniques to identify and synthetically manipulate metabolic nodes that feedback nitrate assimilation in plants. Moreover, the proposed genetic and biochemical management of NO-mediated redox signalling has the potential to ultimately reveal novel chemical and genetic targets that can be used in future crop improvement strategies.
联合国粮食及农业组织预测,在今后30至40年中,世界人口将增加三分之一。全球人口的增加将给农业系统带来巨大的压力。需要同时提高农业生产,以满足已经负担过重的粮食、纤维和燃料需求。然而,对于主要的种植系统,实际平均产量在潜在产量的20%至80%之间。因此,制定新的战略来缩小产量差距具有重要的经济和社会意义。目前,作物生产力严重依赖于商业肥料的使用,归因产量百分比高达90%。特别是,无机离子硝酸盐(陆地植物氮的主要来源)的供应是作物产量的主要瓶颈。由于其在水中的高流动性,硝酸根离子经常从土壤中流失,最终导致环境影响。因此,目前的施肥策略通常提供有限的功效,并且对人类健康和环境具有潜在危害,同时每年仍导致数十亿的经济损失。相反,植物初级代谢的遗传和生物化学改进是提高作物产量同时更有效地利用自然资源的安全和可持续的替代方案。为了科普其在时间和空间上的可用性波动,植物已经进化出根据其N状态和土壤中的硝酸盐浓度来调节硝酸盐吸收的能力。植物通过复杂的运输系统主动地将硝酸盐通过根的质膜进行运输。在有限的可用性下,硝酸盐的获取依赖于高亲和力转运蛋白,其响应于硝酸盐的募集和活性由翻译后修饰介导。硝酸盐一旦被根系吸收,主要被运输到地上部,通过连续的同化反应将N原子进一步结合到碳骨架中,形成含N有机分子,如氨基酸、蛋白质和核苷酸。作为自然界中最耗能的生化途径之一,硝酸盐同化受到严格控制,以确保植物正常发育和生长。一些证据表明,硝酸盐同化途径的通量与活性氮的产生有关。特别是,我们最近表明,氧化还原活性分子一氧化氮(NO),氮代谢的最终产物之一,通过硝酸盐同化途径反馈调节流量。NO的生物活性主要通过蛋白质翻译后修饰S-亚硝基化,即NO部分共价连接形成蛋白质-SNO来介导。我们的研究结果表明,细胞内蛋白质SNO积累与硝酸盐转运蛋白的表达减少和同化反应的抑制有关。因此,与硝酸盐同化相关的反馈回路机制限制了植物的营养同化。值得注意的是,蛋白质-SNO水平的遗传操作显著影响植物活力,这表明可以利用这种反馈机制来提高植物生产力。然而,氮同化途径中氧化还原反应节点的身份以及它们如何控制植物适合度仍不清楚。在这里,我建议使用一个创新的,遗传,基因组和跨学科的成像技术,以确定和综合操纵代谢节点,反馈硝酸盐同化植物。此外,拟议的NO介导的氧化还原信号的遗传和生化管理有可能最终揭示新的化学和遗传目标,可用于未来的作物改良策略。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Immunity onset alters plant chromatin and utilizes EDA16 to regulate oxidative homeostasis.
- DOI:10.1371/journal.ppat.1009572
- 发表时间:2021-05
- 期刊:
- 影响因子:6.7
- 作者:Pardal AJ;Piquerez SJM;Dominguez-Ferreras A;Frungillo L;Mastorakis E;Reilly E;Latrasse D;Concia L;Gimenez-Ibanez S;Spoel SH;Benhamed M;Ntoukakis V
- 通讯作者:Ntoukakis V
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lucas Frungillo其他文献
Soybean extracts enriched with free isol avones promote nitric oxide synthesis and affect the proliferation of breast adenocarcinoma cells
- DOI:
10.1590/s0102-695x2012005000101 - 发表时间:
2013-01-01 - 期刊:
- 影响因子:
- 作者:
Pablo G. Ferreira;Lucas Frungillo;Veridiana V. Rosso;Daisy Machado;Adriana Z. Mercadante;Carmen V. Ferreira;Ione Salgado - 通讯作者:
Ione Salgado
Lucas Frungillo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
Self-DNA介导的CD4+组织驻留记忆T细胞(Trm)分化异常在狼疮肾炎发病中的作用及机制研究
- 批准号:82371813
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于受体识别和转运整合的self-DNA诱导采后桃果实抗病反应的机理研究
- 批准号:32302161
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于序贯递药体系实现对非酒精性脂肪肝的高渗给药和长效治疗
- 批准号:32001001
- 批准年份:2020
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
黎曼流形上的特殊几何结构及相关分类研究
- 批准号:11971153
- 批准年份:2019
- 资助金额:53.0 万元
- 项目类别:面上项目
转录因子ZBTB7B在小鼠乳腺发育过程中的功能及机制研究
- 批准号:31900514
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
新型代谢基因特征簇作为乳腺癌干细胞生物标志物及其靶向的研究
- 批准号:31900515
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Self-shrinkers的刚性及相关问题
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
微环境中缝隙连接对果蝇神经干细胞自我更新与分化的调控机制
- 批准号:31771510
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Aire-dependent thymic B-1a cells play a key role in neonatal tolerance induction
Aire 依赖性胸腺 B-1a 细胞在新生儿耐受诱导中发挥关键作用
- 批准号:
10660882 - 财政年份:2023
- 资助金额:
$ 38.7万 - 项目类别:
Gene regulatory networks in early lung epithelial cell fate decisions
早期肺上皮细胞命运决定中的基因调控网络
- 批准号:
10587615 - 财政年份:2023
- 资助金额:
$ 38.7万 - 项目类别:
Modulation of epigenetic programming of tissue resident macrophage lineages to impact HIV-1 infection, maintenance, and persistence.
调节组织驻留巨噬细胞谱系的表观遗传编程以影响 HIV-1 感染、维持和持久性。
- 批准号:
10675934 - 财政年份:2023
- 资助金额:
$ 38.7万 - 项目类别:
AppalTRuST Project 2: Exposure to tobacco marketing for novel tobacco products and associations with future tobacco use in Appalachian young adults: tobacco regulatory science implications
AppalTrust 项目 2:接触新型烟草产品的烟草营销以及与阿巴拉契亚年轻人未来烟草使用的关联:烟草监管科学影响
- 批准号:
10665321 - 财政年份:2023
- 资助金额:
$ 38.7万 - 项目类别:
Democratizing CAR T cell therapy by in situ programming of virus-specific T cells
通过病毒特异性 T 细胞的原位编程使 CAR T 细胞疗法大众化
- 批准号:
10739646 - 财政年份:2023
- 资助金额:
$ 38.7万 - 项目类别:
Effects of parental history of suicidal behavior on middle/late childhood: Longitudinal assessment of early markers of suicide risk
父母自杀行为史对童年中后期的影响:自杀风险早期标记的纵向评估
- 批准号:
10750571 - 财政年份:2023
- 资助金额:
$ 38.7万 - 项目类别:
Gene Regulation in Memory Circuits as a Consequence of Polysubstance Use
多物质使用导致的记忆电路基因调控
- 批准号:
10739399 - 财政年份:2023
- 资助金额:
$ 38.7万 - 项目类别:
“Pharmacologic targeting of NR4A1 and NR4A2 to activate glioblastoma treatment response”
– NR4A1 和 NR4A2 的药理学靶向激活胶质母细胞瘤治疗反应 –
- 批准号:
10744524 - 财政年份:2023
- 资助金额:
$ 38.7万 - 项目类别:
Dissecting the tumor cell-immune TME axis to identify therapeutically actionable vulnerabilities that potentiate immunotherapy in GBM
剖析肿瘤细胞免疫 TME 轴,以确定可增强 GBM 免疫治疗的治疗上可操作的漏洞
- 批准号:
10743534 - 财政年份:2023
- 资助金额:
$ 38.7万 - 项目类别:














{{item.name}}会员




