Exploiting anatomical traits to accelerate breeding of novel stress tolerant crops
利用解剖特征加速新型抗逆作物的育种
基本信息
- 批准号:BB/S011102/1
- 负责人:
- 金额:$ 38.84万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Drought and low soil fertility are major constraints to global crop production. These constraints are becoming even more challenging over time due to deteriorating soil quality, increasing population pressure and changing climate. In this context, recent discoveries have identified several root anatomical traits that can substantially improve crop yield and climate resilience by improving water and nutrient uptake. For example, the formation of air spaces (termed aerenchyma) in root cortex tissue occurs when living cells undergo programmed cell death. This significantly reduces nutrient demand and respiration of root tissues, enables plant to acquire more soil resources and improve crop yield under drought and suboptimal nutrient conditions. In addition to aerenchyma formation, other traits such as reduced number and layers of living cells in the cortex tissue (termed cortical cell count and cortical cell file number respectively) confer similar benefits. However, despite this knowledge, anatomical traits have received little attention as selection criteria in crop breeding because of the challenges associated with sampling and quantification of anatomical phenotypes."Anatomics" is a novel interdisciplinary approach that now makes it possible for the first time to rapidly image and analyse plant anatomical traits in large numbers of crop varieties. Using this approach, my US collaborators generated root anatomical data for hundreds of maize varieties grown over 5 years in South Africa. Next, I analysed this dataset using an integrated gene-discovery pipeline that includes Genome wide association studies (GWAS), literature mining and enhanced data visualisation techniques. This analysis highlighted correlations between the anatomical data and hundreds of thousands of DNA polymorphisms in the maize diversity panel and thus pinpointed key genes that control root anatomical traits in maize. For instance, my pipeline identified two novel transcription factors functionally associated with aerenchyma formation. Mutation analysis of a maize mu insertion and a rice ortholog mutant for these transcription factors found a significant reduction in aerenchyma percentage in the mutants compared to the wild type. These studies confirmed the role of representative genes obtained from the Anatomics datasets in aerenchyma formation. However, the molecular mechanisms underlying the regulation of aerenchyma development are largely unknown. As a BBSRC Discovery Fellow, I will pioneer the use of anatomics and functional genomics approaches in cereal crops at University of Nottingham. My first objective will be to determine the molecular mechanism for aerenchyma mediated resilience in maize. Next, I will use Laser Capture Microdissection and Single-Cell RNA sequencing approaches to generate a cellular resolution gene expression atlas for the maize root and map genes and signals that control aerenchyma formation during root growth and development. Finally, I will translate the knowledge generated in maize to other important and often under-invested crops such as pearl millet to accelerate breeding and genetic improvement programmes. Aerenchyma formation is a developmental programme where specific cells within the same cortical layer undergo programmed cell death while neighboring cells survive. My spatiotemporal gene expression atlas of maize root at cellular resolution will be an unparalleled resource to characterise aerenchyma as well as other root anatomical traits and developmental programmes. Further, the gene regulatory mechanisms unravelled from this research will also help us to understand how such traits confer stress tolerance in maize and pearl millet crops which are economically important dietary staples. Thus, my research will also contribute to UK's global food security efforts.
干旱和土壤肥力低是全球作物生产的主要制约因素。随着时间的推移,由于土壤质量恶化、人口压力增加和气候变化,这些制约因素变得更具挑战性。在这种情况下,最近的发现已经确定了几个根系解剖特征,可以通过改善水分和养分吸收来大幅提高作物产量和气候适应能力。例如,当活细胞经历程序性细胞死亡时,根皮层组织中的空气空间(称为通气组织)的形成发生。这显著降低了养分需求和根组织的呼吸作用,使植物能够在干旱和次优养分条件下获得更多的土壤资源并提高作物产量。除了通气组织形成之外,其他性状如皮质组织中活细胞的数量和层数减少(分别称为皮质细胞计数和皮质细胞列数)也具有类似的益处。然而,尽管有这些知识,解剖性状作为作物育种的选择标准很少受到关注,因为与解剖表型的取样和定量相关的挑战。“解剖学”是一种新的跨学科方法,现在首次能够快速成像和分析大量作物品种的植物解剖特征。使用这种方法,我的美国合作者为南非种植5年以上的数百种玉米品种生成了根部解剖数据。接下来,我使用集成的基因发现管道分析了这个数据集,其中包括全基因组关联研究(GWAS),文献挖掘和增强的数据可视化技术。这项分析突出了玉米多样性小组中解剖数据与数十万DNA多态性之间的相关性,从而确定了控制玉米根解剖性状的关键基因。例如,我的管道确定了两个新的转录因子功能相关的通气组织形成。突变分析的玉米亩插入和水稻直系同源突变体的这些转录因子发现一个显着减少通气组织的百分比相比,野生型的突变体。这些研究证实了从Anatomics数据集获得的代表性基因在通气组织形成中的作用。然而,通气组织发育调控的分子机制在很大程度上是未知的。作为一名BBSRC发现研究员,我将在诺丁汉大学率先在谷类作物中使用解剖学和功能基因组学方法。我的第一个目标将是确定通气组织介导的玉米恢复力的分子机制。接下来,我将使用激光捕获显微切割和单细胞RNA测序方法来生成玉米根的细胞分辨率基因表达图谱,并绘制在根生长和发育过程中控制通气组织形成的基因和信号。最后,我将把玉米方面的知识转化为其他重要但往往投资不足的作物,如珍珠粟,以加快育种和遗传改良计划。通气组织形成是一个发育程序,其中同一皮层内的特定细胞经历程序性细胞死亡,而相邻细胞存活。我的时空基因表达图谱的玉米根在细胞分辨率将是一个无与伦比的资源,通气组织以及其他根解剖性状和发展计划。此外,从这项研究中揭示的基因调控机制也将帮助我们了解这些性状如何赋予玉米和珍珠粟作物的抗逆性,这些作物是经济上重要的膳食斯台普斯。因此,我的研究也将有助于英国的全球粮食安全的努力。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ethylene regulates auxin-mediated root gravitropic machinery and controls root angle in cereal crops
- DOI:10.1093/plphys/kiae134
- 发表时间:2024-03-06
- 期刊:
- 影响因子:7.4
- 作者:Kong,Xiuzhen;Xiong,Yali;Huang,Guoqiang
- 通讯作者:Huang,Guoqiang
Root angle is controlled by EGT1 in cereal crops employing an antigravitropic mechanism.
- DOI:10.1073/pnas.2201350119
- 发表时间:2022-08-02
- 期刊:
- 影响因子:11.1
- 作者:
- 通讯作者:
Phosphite treatment can improve root biomass and nutrition use efficiency in wheat.
- DOI:10.3389/fpls.2022.1017048
- 发表时间:2022
- 期刊:
- 影响因子:5.6
- 作者:
- 通讯作者:
Silicon and bioagents pretreatments synergistically improve upland rice performance during water stress
硅和生物制剂预处理可协同提高旱稻在水分胁迫下的性能
- DOI:10.1016/j.stress.2023.100142
- 发表时间:2023
- 期刊:
- 影响因子:5
- 作者:Costa N
- 通讯作者:Costa N
Endoreplication controls cell size via mechanochemical signaling.
内复制通过机械化学信号传导控制细胞大小。
- DOI:10.1016/j.tplants.2023.03.016
- 发表时间:2023
- 期刊:
- 影响因子:20.5
- 作者:Bhosale R
- 通讯作者:Bhosale R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rahul Bhosale其他文献
Interplay between developmental cues and rhizosphere signals from mycorrhizal fungi shape root anatomy, impacting crop productivity
- DOI:
10.1007/s11104-024-06611-z - 发表时间:
2024-03-11 - 期刊:
- 影响因子:4.100
- 作者:
Alexandre Grondin;Meng Li;Rahul Bhosale;Ruairidh Sawers;Hannah M. Schneider - 通讯作者:
Hannah M. Schneider
ABA-auxin cascade regulates crop root angle in response to drought
ABA-生长素级联反应调节作物根角以应对干旱
- DOI:
10.1016/j.cub.2024.12.003 - 发表时间:
2025-02-03 - 期刊:
- 影响因子:7.500
- 作者:
Yali Xiong;Xiaoyun Song;Poonam Mehra;Suhang Yu;Qiaoyi Li;Dilixiadanmu Tashenmaimaiti;Malcolm Bennett;Xiuzhen Kong;Rahul Bhosale;Guoqiang Huang - 通讯作者:
Guoqiang Huang
Auxin-dependent post-translational regulation of MONOPTEROS in the <em>Arabidopsis</em> root
- DOI:
10.1016/j.celrep.2024.115083 - 发表时间:
2024-12-24 - 期刊:
- 影响因子:
- 作者:
Alex Cavalleri;Chiara Astori;Jekaterina Truskina;Mara Cucinotta;Etienne Farcot;Elina Chrysanthou;Xiaocai Xu;Jose M. Muino;Kerstin Kaufmann;Martin M. Kater;Teva Vernoux;Dolf Weijers;Malcolm J. Bennett;Rahul Bhosale;Anthony Bishopp;Lucia Colombo - 通讯作者:
Lucia Colombo
Rahul Bhosale的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rahul Bhosale', 18)}}的其他基金
Diving Deeper: Unravelling How Plants Regulate Root Growth Angle
深入研究:揭示植物如何调节根部生长角度
- 批准号:
BB/X014843/1 - 财政年份:2023
- 资助金额:
$ 38.84万 - 项目类别:
Research Grant
相似国自然基金
盲人脑网络可塑性的磁共振影像研究
- 批准号:30900476
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Multivariate machine learning analysis for identyfing neuro-anatomical biomarkers of anorexia and classifying anorexia subtypes using MR datasets.
多变量机器学习分析,用于识别厌食症的神经解剖生物标志物并使用 MR 数据集对厌食症亚型进行分类。
- 批准号:
23K14813 - 财政年份:2023
- 资助金额:
$ 38.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Identifying novel trunk reflexes and their differences after neonatal versus adult spinal cord injury
新生儿与成人脊髓损伤后识别新的躯干反射及其差异
- 批准号:
10753793 - 财政年份:2023
- 资助金额:
$ 38.84万 - 项目类别:
Implications of Prefrontal Cortex Development for Adolescent Reward Seeking Behavior
前额皮质发育对青少年奖励寻求行为的影响
- 批准号:
10739548 - 财政年份:2023
- 资助金额:
$ 38.84万 - 项目类别:
Study on 3D Reconstruction of Anatomical Structures from Laparoscopic Images
腹腔镜图像解剖结构的 3D 重建研究
- 批准号:
23KJ1110 - 财政年份:2023
- 资助金额:
$ 38.84万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Attempt to form the basis of anatomical diagnostic protocol for dysphagia
尝试为吞咽困难奠定解剖学诊断方案的基础
- 批准号:
23K18356 - 财政年份:2023
- 资助金额:
$ 38.84万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
The Role of Neurotensin-Expressing Neurons of the Extended Ventrolateral Preoptic Nucleus in REM Sleep Regulation
扩展腹外侧视前核表达神经降压素的神经元在快速眼动睡眠调节中的作用
- 批准号:
10663472 - 财政年份:2023
- 资助金额:
$ 38.84万 - 项目类别:
Establishing the anatomical and functional mechanisms of white matter deep brain stimulation
建立白质深部脑刺激的解剖和功能机制
- 批准号:
10803745 - 财政年份:2023
- 资助金额:
$ 38.84万 - 项目类别:
Disentangling the anatomical, functional and clinical heterogeneity of major depression, using machine learning methods
使用机器学习方法解开重度抑郁症的解剖学、功能和临床异质性
- 批准号:
10714834 - 财政年份:2023
- 资助金额:
$ 38.84万 - 项目类别:
Neuropeptide Y1 Receptor-Expressing Neurons in the Lateral Parabrachial Nucleus in Neuropathic Pain
神经性疼痛中臂旁核外侧核表达神经肽 Y1 受体的神经元
- 批准号:
10635473 - 财政年份:2023
- 资助金额:
$ 38.84万 - 项目类别: