Matter of context: Revealing the circuit architecture of internal brain state influence on behaviour
背景问题:揭示大脑内部状态对行为影响的回路架构
基本信息
- 批准号:BB/S010564/1
- 负责人:
- 金额:$ 39.26万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My aim is to understand how ongoing internal activity patterns within the brain shape the way it processes information and controls behaviour. Human and animal behaviour is not merely a set of 'automatic' reflexes. Rather, the way we respond to sensory inputs such as the sight of food or the sound of a phone ringing depends on multiple contextual factors such as emotional state, time of day and how satiated or alert we are. Modern neuroscience has made important progress towards understanding the brain systems that report these factors. For instance, the dopaminergic and serotonergic systems that signal reward have been extensively studied due to their importance in shaping normal behaviour as well as psychiatric disorders. However, major challenges remain in terms of understanding how multiple brain pathways act together to modulate sensory processing and behaviour. To a large extent this is due to the size and complexity of the brain which precludes simultaneous measurement of the many brain cells involved. By establishing a new research programme in the Department of Neuroscience, Physiology & Pharmacology at UCL, I plan to take a novel approach to tackle this problem. My strategy combines state-of-the-art imaging in an experimentally advantageous model organism - the larval zebrafish - with data-driven biology and computational modelling: key research avenues identified by the BBSRC.Zebrafish larvae are particularly well suited for simultaneously tracking activity in multiple brain structures. This tiny animal (3.5 mm long) is almost perfectly transparent, allowing its small brain to be monitored non-invasively using fluorescent microscopy while the fish performs a range of recognizable behaviours such as hunting and avoidance. Importantly, many of these behaviours are influenced by contextual factors such as hunger or alertness, by virtue of brain circuits fish share with all other vertebrates, including humans. To study how distributed brain networks work together to shape behaviour, I will use cutting-edge "light-sheet microscopy" to individually track the activity of each of the zebrafish's 80,000 neurons. While doing so, I will alter environmental factors to manipulate satiety, alertness and other contextual elements. Deciphering the resulting dataset will be a complex endeavour, comparable to extracting insights into market dynamics by simultaneously listening to each and every one of the 100,000 finance employees in the City of London. The potential for valuable insights is enormous, but so is the challenge in making sense of the massive amount of data and finding the most informative sources. To meet this challenge, I will use recurrent neural networks - a modern machine-learning algorithm akin to the one that powers automated speech recognition. It will enable me to identify neurons that can predict if the animal is likely to respond to a specific visual cue, even before the stimulus is presented. Such cells are good candidates for signalling contextual information and my computational modelling will resolve how they work together to collectively influence behaviour. To test my hypotheses, I will use advanced "optogenetic methods" to directly control brain activity using light and examine the resulting effects on activity elsewhere in the brain and on the behaviour of the fish.Ultimately, these findings will shed new light on how neural activity related to context and experience combine to influence fundamental brain function. Because all vertebrates possess the same basic brain plan, my experimental findings are likely to reveal principles that apply to many species, including humans. Thus, in line with the BBSRC's priority of supporting world-class basic bioscience for health, this project will provide a major advance in our understanding of how the healthy brain produces behaviour. In the longer term, this could underpin greater understanding of how brain function is disrupted during disease.
我的目标是了解大脑中正在进行的内部活动模式如何塑造它处理信息和控制行为的方式。人类和动物的行为不仅仅是一组“自动”的反应。相反,我们对食物的视觉或电话铃声等感官输入的反应取决于多种背景因素,如情绪状态、一天中的时间以及我们有多饱或多警觉。现代神经科学在理解报告这些因素的大脑系统方面取得了重要进展。例如,发出奖赏信号的多巴胺和5-羟色胺能系统由于在塑造正常行为和精神障碍方面的重要性而被广泛研究。然而,在理解多条大脑通路如何共同作用以调节感觉处理和行为方面,主要挑战仍然存在。这在很大程度上是由于大脑的大小和复杂性,这排除了同时测量涉及的许多脑细胞的可能性。通过在伦敦大学学院神经科学、生理学和药理学系建立一个新的研究项目,我计划采取一种新的方法来解决这个问题。我的策略将一种具有实验优势的模式生物--斑马鱼幼体--的最先进成像与数据驱动生物学和计算建模相结合:BBSRC确定的关键研究途径斑马鱼幼体特别适合同时跟踪多个大脑结构中的活动。这种微小的动物(3.5毫米长)几乎是完全透明的,允许使用荧光显微镜非侵入性地监视它的小大脑,而鱼则执行一系列可识别的行为,如狩猎和回避。重要的是,由于鱼类与包括人类在内的所有其他脊椎动物共享大脑回路,这些行为中的许多都受到饥饿或警觉等环境因素的影响。为了研究分布式大脑网络如何共同作用来塑造行为,我将使用尖端的“光片显微镜”来单独跟踪斑马鱼8万个神经元中的每一个的活动。在这样做的同时,我会改变环境因素,以操纵饱腹感、警觉性和其他背景因素。破译由此产生的数据集将是一项复杂的工作,相当于通过同时听取伦敦金融城10万名金融从业人员的每一个人的意见来提取对市场动态的洞察。有价值的见解的潜力是巨大的,但在理解海量数据和寻找最具信息量的来源方面的挑战也是巨大的。为了迎接这一挑战,我将使用递归神经网络--一种类似于支持自动语音识别的现代机器学习算法。这将使我能够识别神经元,这些神经元可以预测动物是否可能对特定的视觉提示做出反应,甚至在刺激出现之前。这样的细胞是发出背景信息信号的很好候选者,我的计算模型将解决它们如何协同工作,共同影响行为。为了验证我的假设,我将使用先进的“光遗传学方法”直接利用光控制大脑活动,并研究由此对大脑其他部位的活动和鱼的行为产生的影响。最终,这些发现将为与环境和经验相关的神经活动如何结合起来影响基本大脑功能提供新的线索。因为所有脊椎动物都有相同的基本大脑计划,我的实验结果可能会揭示适用于包括人类在内的许多物种的原理。因此,按照BBSRC支持世界级基础生物科学促进健康的优先事项,该项目将在我们理解健康大脑如何产生行为方面取得重大进展。从长远来看,这可能会为更好地理解疾病期间大脑功能是如何中断的奠定基础。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A recurrent network architecture explains tectal activity dynamics and experience-dependent behaviour
- DOI:10.1101/2022.03.30.486335
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Asaph Zylbertal;I. H. Bianco
- 通讯作者:Asaph Zylbertal;I. H. Bianco
Recurrent network interactions explain tectal response variability and experience-dependent behavior.
经常性网络相互作用解释了直肠响应的变异性和经验依赖性行为。
- DOI:10.7554/elife.78381
- 发表时间:2023-03-21
- 期刊:
- 影响因子:7.7
- 作者:Zylbertal A;Bianco IH
- 通讯作者:Bianco IH
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Asaph Zylbertal其他文献
Mirror-assisted light-sheet microscopy: a simple upgrade to enable bi-directional sample excitation
镜面辅助光片显微镜:简单升级即可实现双向样品激发
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Asaph Zylbertal;IH Bianco - 通讯作者:
IH Bianco
Pollination ecology of the red Anemone coronaria (Ranunculaceae): honeybees may select for early flowering
红色银莲花(毛茛科)的授粉生态:蜜蜂可能选择提前开花
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
T. Keasar;A. Shmida;Asaph Zylbertal - 通讯作者:
Asaph Zylbertal
Asaph Zylbertal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于Context建模的基因组数据压缩研究
- 批准号:61861045
- 批准年份:2018
- 资助金额:35.0 万元
- 项目类别:地区科学基金项目
形式矩阵环的环性质、图性质及同调理论
- 批准号:11661014
- 批准年份:2016
- 资助金额:36.0 万元
- 项目类别:地区科学基金项目
Focus+Context支持的群集三维对象变形可视化
- 批准号:41671381
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
信息可视化中基于语义DOI的F+C交互方法及应用
- 批准号:61103096
- 批准年份:2011
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
普适计算环境下基于交互迁移与协作的智能人机交互研究
- 批准号:61003219
- 批准年份:2010
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
基于Context建模的熵编码及其应用研究
- 批准号:61062005
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:地区科学基金项目
普适环境下移动事务关键技术研究
- 批准号:60773089
- 批准年份:2007
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Doctoral Dissertation Research: Human mobility and infectious disease transmission in the context of market integration
博士论文研究:市场一体化背景下的人员流动与传染病传播
- 批准号:
2341234 - 财政年份:2024
- 资助金额:
$ 39.26万 - 项目类别:
Standard Grant
Agricultural Adaptation in a Geographic Context.
地理背景下的农业适应。
- 批准号:
2347017 - 财政年份:2024
- 资助金额:
$ 39.26万 - 项目类别:
Standard Grant
Embodiment Feeling in a Mental Illness Avatar on Stigma Context in Virtual Reality
虚拟现实中精神疾病化身在耻辱背景下的具体感受
- 批准号:
24K15026 - 财政年份:2024
- 资助金额:
$ 39.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Managing diversity in the context of digitalization and novel technologies: integrating profitability and well-being in Japanese firms
在数字化和新技术背景下管理多样性:整合日本企业的盈利能力和福祉
- 批准号:
24K05065 - 财政年份:2024
- 资助金额:
$ 39.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Outcome of EMI Programs in Higher Education Context: Cases from Japan and Mongolia
调查高等教育背景下 EMI 项目的成果:日本和蒙古的案例
- 批准号:
24K16709 - 财政年份:2024
- 资助金额:
$ 39.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Project Visibility: Understanding the Experiences of Black Students in Active Learning Mathematics Courses in a Hispanic-Serving Institution Context
项目可见性:了解黑人学生在西班牙裔服务机构背景下主动学习数学课程的经历
- 批准号:
2337029 - 财政年份:2024
- 资助金额:
$ 39.26万 - 项目类别:
Standard Grant
ELOQUENCE - Multilingual and Cross-cultural interactions for context-aware, and bias-controlled dialogue systems for safety-critical applications
ELOQUENCE - 用于安全关键应用的上下文感知和偏差控制对话系统的多语言和跨文化交互
- 批准号:
10092660 - 财政年份:2024
- 资助金额:
$ 39.26万 - 项目类别:
EU-Funded
Evolution of a Viral Fusion Protein in the Context of a Worldwide Pandemic
全球大流行背景下病毒融合蛋白的进化
- 批准号:
502581 - 财政年份:2024
- 资助金额:
$ 39.26万 - 项目类别:
Elias Canetti and the British in a European Context: Reception, Exile, Appropriation
埃利亚斯·卡内蒂和欧洲背景下的英国人:接受、流放、挪用
- 批准号:
AH/Y007581/1 - 财政年份:2024
- 资助金额:
$ 39.26万 - 项目类别:
Research Grant
Creating a Dynamic Archive of Responsible Ecosystems in the Context of Creative AI
在创意人工智能的背景下创建负责任的生态系统的动态档案
- 批准号:
AH/Z505572/1 - 财政年份:2024
- 资助金额:
$ 39.26万 - 项目类别:
Research Grant