Understanding the functional activation of G protein-coupled receptors (GPCRs) in the context of their lipid bilayer environment

了解 G 蛋白偶联受体 (GPCR) 在脂质双层环境中的功能激活

基本信息

  • 批准号:
    BB/S015892/1
  • 负责人:
  • 金额:
    $ 61.25万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Human beings are made up of millions of cells. To sustain life these cells need to be able to work together. Each cell has its own machinery and is surrounded by a water-impermeable membrane forming a physical boundary. This membrane consists of a lipid bilayer into which a large number of water-insoluble proteins are embedded, so-called membrane proteins. These are essential for transmitting required nutrients, energy and information across the membrane. To work in a coordinated fashion, cells need to be able to adjust themselves to changes in their surroundings. This requires the ability to communicate environmental variations across the membrane bilayer. A large family of ca. 800 membrane embedded proteins is tasked to do this. These so-called G protein-coupled receptors (GPCRs) have the ability to sense the presence of a wide range of extracellular stimuli in the form of chemicals, peptides and proteins, for example odorants, pheromones, neurotransmitters, hormones, light (amongst others) and to communicate their presence to the cell interior. As cellular sensors, GPCRs are key players in the regulation of a wide range of normal, physiological and disease-related processes. Located on the cell surface they are already targeted by many of the currently available drugs. However, there is vast potential to develop this further in order to tackle many more diseases or improve existing treatments, with the promise to lead to dramatic improvements in health in the future. To achieve this, there is an urgent need to obtain a better understanding of how GPCRs function. Typically this involves obtaining information on these proteins at a molecular level, and chemists and biologists are using a range of sophisticated methodologies that generate such insight. For an increasing number of these GPCRs it has recently become possible to visualize the structural aspects of these highly unstable and difficult to handle proteins in the form of static snapshot pictures. Based on these, one would assume that GPCRs function as simple on/off switches. However, GPCRs are highly mobile, shape-shifting proteins and this trademark characteristic lies at the heart of their function. Accordingly, many questions remain to be answered as the simple on/off picture is gradually replaced by one portraying GPCRs as rheostats i.e. continuous regulators.In our proposal we will investigate the dynamic nature of these receptors using a particular GPCR called b1 adrenergic receptor (b1AR). This receptor plays an important role in the regulation of heart function, is involved in many diseases and is targeted by the famous beta blocker drugs. To understand the role of the dynamic nature for GPCR function we will mimic the natural cellular membrane environment and embed the receptor in small particles that resemble lipid bilayer rafts. We will then use a technique called nuclear magnetic resonance (NMR) spectroscopy to investigate how the shape-shifting properties of these proteins contribute to their function. Using such small membrane bilayer particles will allow us to study b1AR under realistic conditions and to focus on the role of the lipid environment for GPCR function. NMR spectroscopy will give us insight on how this receptor interacts with a range of proteins that couple to the receptor and how the initial signal sensed by the GPCR is transmitted from the cell exterior across the membrane to the inside of the cell. We will be able to study regions of the receptor that for technical reasons are inaccessible to other investigation methods, which is particularly valuable. Our study will improve our understanding of how this receptor works and will create a basis for the development of new drugs. While some of our findings will be specific to the b1AR receptor we are anticipating that many of the discoveries will also advance our general understanding of how GPCRs work.
人类是由数百万个细胞组成的。为了维持生命,这些细胞需要能够协同工作。每个电池都有自己的机械装置,并被形成物理边界的不透水膜包围。这种膜由脂质双层组成,其中嵌入了大量不溶于水的蛋白质,即所谓的膜蛋白。这些对于跨膜传递所需的营养、能量和信息是必不可少的。为了协调工作,细胞需要能够调整自己以适应环境的变化。这需要跨膜双层传递环境变化的能力。一个由大约800种膜嵌入蛋白组成的大家族负责完成这项任务。这些所谓的G蛋白偶联受体(GPCRs)能够感知各种化学物质、多肽和蛋白质形式的细胞外刺激的存在,例如气味、信息素、神经递质、激素、光(等等)的存在,并将它们的存在传达到细胞内部。作为细胞传感器,GPCRs在调节广泛的正常、生理和疾病相关过程中发挥着关键作用。它们位于细胞表面,已经成为许多目前可用的药物的靶标。然而,进一步发展这一技术的潜力巨大,以应对更多的疾病或改进现有的治疗方法,并有望在未来导致健康状况的显著改善。为实现这一目标,迫切需要更好地了解GPCRs的运作方式。通常,这涉及在分子水平上获得关于这些蛋白质的信息,化学家和生物学家正在使用一系列复杂的方法来产生这种洞察力。对于越来越多的这种GPCR,最近已经有可能以静态快照的形式直观地显示这些高度不稳定和难以处理的蛋白质的结构方面。基于这些,人们可以假设GPCR的功能就像简单的开/关开关。然而,GPCRs是高度流动的、变形的蛋白质,这一商标特征是它们功能的核心。因此,随着简单的开/关图逐渐被描绘为阻力调节器即连续调节器的GPCRs所取代,许多问题仍有待回答。在我们的建议中,我们将使用一种称为b1肾上腺素能受体(B1AR)的特定GPCR来研究这些受体的动态性质。该受体在心脏功能调节中发挥重要作用,参与多种疾病,是著名的β受体阻滞剂的靶点。为了了解GPCR功能的动态性质所起的作用,我们将模拟自然的细胞膜环境,并将受体嵌入类似于脂质双层筏的小颗粒中。然后,我们将使用一种名为核磁共振(核磁共振)的技术来研究这些蛋白质的形状变化特性如何影响它们的功能。使用这种小的膜双层颗粒将使我们能够在现实条件下研究b1AR,并专注于脂环境对GPCR功能的作用。核磁共振波谱将使我们深入了解该受体如何与一系列偶联到受体的蛋白质相互作用,以及GPCR检测到的初始信号是如何从细胞外部跨膜传递到细胞内部的。我们将能够研究由于技术原因而无法用其他研究方法获得的受体区域,这是特别有价值的。我们的研究将提高我们对该受体如何发挥作用的理解,并将为新药的开发奠定基础。虽然我们的一些发现将是针对b1AR受体的,但我们预计许多发现也将促进我们对GPCRs如何工作的总体理解。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structure and Dynamics of GPCRs in Lipid Membranes: Physical Principles and Experimental Approaches.
  • DOI:
    10.3390/molecules25204729
  • 发表时间:
    2020-10-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jones AJY;Gabriel F;Tandale A;Nietlispach D
  • 通讯作者:
    Nietlispach D
Structure and Dynamics of GPCRs in Lipid Membranes: Physical Principles and Experimental Approaches
脂膜中 GPCR 的结构和动力学:物理原理和实验方法
  • DOI:
    10.17863/cam.58724
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jones A
  • 通讯作者:
    Jones A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Nietlispach其他文献

NMR studies of 56 kDa E. coli nickel binding protein NikA
56 kDa 大肠杆菌镍结合蛋白 NikA 的 NMR 研究
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joanna Jakus;Yuusuke Tsuchie;Teppei Ikeya;Masaki Mishima;Daniel Nietlispach;Jeremy R. H. Tame;Yutaka Ito
  • 通讯作者:
    Yutaka Ito
Structural and dynamics studies of proteins in living cells by in-cell NMR spectroscopy
通过细胞内核磁共振波谱对活细胞中蛋白质的结构和动力学研究
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junpei Hamatsu;Takahiro Shirai;Daniel Nietlispach;Teppei Ikeya;Masaki Mishima;Masahiro Shirakawa and Yutaka Ito
  • 通讯作者:
    Masahiro Shirakawa and Yutaka Ito
異なるサイズの微粒子を取り込んだミドリゾウリムシの食胞の観察
含有不同尺寸微粒的鹿角草履虫食物液泡的观察
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    重光佳基,池谷鉄兵,土江祐介,三島正規;Daniel Nietlispach;Markus Waelchli;Peter Guentert;Brian O. Smith,伊藤隆;児玉有紀
  • 通讯作者:
    児玉有紀
Formatex Research Center Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology
Formatex 研究中心应用微生物学和微生物生物技术的当前研究、技术和教育主题
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    重光佳基,池谷鉄兵,土江祐介,三島正規;Daniel Nietlispach;Markus Waelchli;Peter Guentert;Brian O. Smith,伊藤隆;児玉有紀;宮川直也;Kodama Y. and Fujishima M.
  • 通讯作者:
    Kodama Y. and Fujishima M.
Backbone ^1H, ^<13>C, and ^<15>N assignments of a 42 kDa RecR homodimer.
42 kDa RecR 同二聚体的主链^1H、^13C 和^15N 分配。
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masayoshi Honda;Sundaresan Rajesh;Daniel Nietlispach;Tsutomu Mikawa;Takehiko Shibata;Yutaka Ito
  • 通讯作者:
    Yutaka Ito

Daniel Nietlispach的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Nietlispach', 18)}}的其他基金

A dynamic view of GPCR-G protein complexes: insight into partial agonism and G protein selectivity
GPCR-G 蛋白复合物的动态视图:深入了解部分激动和 G 蛋白选择性
  • 批准号:
    BB/W020718/1
  • 财政年份:
    2022
  • 资助金额:
    $ 61.25万
  • 项目类别:
    Research Grant
Solution NMR spectroscopy studies of an adrenergic receptor b1AR
肾上腺素受体 b1AR 的溶液核磁共振波谱研究
  • 批准号:
    BB/K01983X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 61.25万
  • 项目类别:
    Research Grant
Structure determination of the 7-helix transmembrane protein receptor pSRII by solution NMR
通过溶液 NMR 测定 7 螺旋跨膜蛋白受体 pSRII 的结构
  • 批准号:
    BB/G011915/1
  • 财政年份:
    2009
  • 资助金额:
    $ 61.25万
  • 项目类别:
    Research Grant
High Sensitivity Cryoprobe Equipment for the NMR Facility of the Department of Biochemistry University of Cambridge
剑桥大学生物化学系核磁共振设备的高灵敏度冷冻探针设备
  • 批准号:
    BB/E013228/1
  • 财政年份:
    2007
  • 资助金额:
    $ 61.25万
  • 项目类别:
    Research Grant

相似国自然基金

Got2基因对浆细胞样树突状细胞功能的调控及其在系统性红斑狼疮疾病中的作用研究
  • 批准号:
    82371801
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
利用CRISPR内源性激活Atoh1转录促进前庭毛细胞再生和功能重建
  • 批准号:
    82371145
  • 批准年份:
    2023
  • 资助金额:
    46.00 万元
  • 项目类别:
    面上项目
SMC5-NSMCE2功能异常激活APSCs中p53/p16衰老通路导致脂肪萎缩和胰岛素抵抗的机制研究
  • 批准号:
    82371873
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于再生运动神经路径优化Agrin作用促进损伤神经靶向投射的功能研究
  • 批准号:
    82371373
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
HK2乳酰化修饰介导巨噬细胞功能障碍在脓毒症中的作用及机制
  • 批准号:
    82372160
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
  • 批准号:
    82371997
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
LTB4/BLT1轴调控NLRP3炎症小体对糖尿病认知功能障碍的作用研究
  • 批准号:
    82371213
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
OBSL1功能缺失导致多指(趾)畸形的分子机制及其临床诊断价值
  • 批准号:
    82372328
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
浸润特性调制的统计热力学研究
  • 批准号:
    21173271
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Understanding the immune response changes to clinical interventions for Epstein-Barr virus infection prior to lymphoma development in children after organ transplants (UNEARTH)
了解器官移植后儿童淋巴瘤发展之前针对 Epstein-Barr 病毒感染的临床干预的免疫反应变化(UNEARTH)
  • 批准号:
    10755205
  • 财政年份:
    2023
  • 资助金额:
    $ 61.25万
  • 项目类别:
Deciphering the complex pharmacology of CB1: towards the understanding of a third signaling pathway
解读 CB1 的复杂药理学:了解第三条信号通路
  • 批准号:
    10667865
  • 财政年份:
    2023
  • 资助金额:
    $ 61.25万
  • 项目类别:
Understanding the induction of T cell dysfunction in the context of lung cancer
了解肺癌背景下 T 细胞功能障碍的诱导
  • 批准号:
    10648618
  • 财政年份:
    2023
  • 资助金额:
    $ 61.25万
  • 项目类别:
Understanding intrinsic resistance to direct KRAS inhibition in colorectal cancers
了解结直肠癌对直接 KRAS 抑制的内在抵抗
  • 批准号:
    10346971
  • 财政年份:
    2022
  • 资助金额:
    $ 61.25万
  • 项目类别:
Understanding human antibody responses to chronic viral hepatitis C
了解人类抗体对慢性丙型病毒性肝炎的反应
  • 批准号:
    10551237
  • 财政年份:
    2022
  • 资助金额:
    $ 61.25万
  • 项目类别:
Understanding endothelial cell fate changes as mediators in the pathogenesis of preeclampsia
了解内皮细胞命运变化作为先兆子痫发病机制的介质
  • 批准号:
    10462390
  • 财政年份:
    2022
  • 资助金额:
    $ 61.25万
  • 项目类别:
Understanding the age-dependent mitochondrial function in astrocytes after spinal cord injury via bi-directional manipulation of activity
通过双向操纵活性了解脊髓损伤后星形胶质细胞的年龄依赖性线粒体功能
  • 批准号:
    10503483
  • 财政年份:
    2022
  • 资助金额:
    $ 61.25万
  • 项目类别:
Understanding the impact of group 2 innate lymphoid cells on airway epithelial regeneration and repair
了解第 2 组先天淋巴细胞对气道上皮再生和修复的影响
  • 批准号:
    10387545
  • 财政年份:
    2022
  • 资助金额:
    $ 61.25万
  • 项目类别:
Improving cognition by understanding and harnessing the plasticity of gamma-generating circuits in prefrontal cortex
通过理解和利用前额皮质伽马生成电路的可塑性来提高认知能力
  • 批准号:
    10606442
  • 财政年份:
    2022
  • 资助金额:
    $ 61.25万
  • 项目类别:
Understanding the impact of group 2 innate lymphoid cells on airway epithelial regeneration and repair
了解第 2 组先天淋巴细胞对气道上皮再生和修复的影响
  • 批准号:
    10683709
  • 财政年份:
    2022
  • 资助金额:
    $ 61.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了