Regulation of inhibitory synapse function by Neuroligin 2 membrane dynamics, trafficking and phosphorylation

Neuroligin 2 膜动力学、运输和磷酸化对抑制性突触功能的调节

基本信息

  • 批准号:
    BB/S017496/1
  • 负责人:
  • 金额:
    $ 70.12万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Nerve cells communicate with each other via specialised cell-cell contact sites called synapses. On the presynaptic side the input neuron releases neurotransmitters that activate specialised neurotransmitter receptors located on the receiving neuron at the postsynaptic side. Synapses can have either an excitatory (activating) or an inhibitory (inactivating) role in brain signalling. For the brain to function well, it is important that synapses are formed correctly, i.e. the pre- and postsynaptic side are precisely apposed to each other, and that brain activity is properly regulated. If synapses do not wire correctly during development or go wrong later in life this can lead to devastating neuropsychiatric and neurodegenerative brain disorders like Schizophrenia, autism and Alzheimer's disease, respectively. The protein family of Neuroligins play a key role in synapse formation and maintenance. They are positioned in the membrane of the postsynaptic side and, by binding the protein Neurexin at the presynaptic side, bridge the synaptic cleft. Neuroligin-2 (NL2) is specifically located at the inhibitory synapse, where it induces clustering of the protein gephyrin to form a scaffold. The main inhibitory neurotransmitter receptor of our central nervous system, the GABA-A receptor, is then stabilised at the synapse by gephyrin and LHFPL4. Synapses can change their strength in response to changes in neural activity, an important property for key brain functions such as learning and memory, and for maintaining the balance between excitation and inhibition. The strength of the response at a synapse can be regulated by altering the size of the scaffold and the number of attached neurotransmitter receptors. Through its role in stabilising the synapse, NL2 is likely to be a key regulator of the number of GABA-A receptors in the postsynaptic membrane, and thus of inhibitory synapse strength and information processing in the brain. Little is known, however, about the molecular mechanisms that control NL2 number at the synapse, or its dynamic movement into and out of the synapse.We have initial data suggesting that brain activity causes a change in the amount of NL2 on the cell surface, through its release from the synapse and uptake into the cell (a process called endocytosis). We have also identified a number of novel proteins that interact with NL2 and may be involved with either its stabilisation at the synapse, or regulating whether NL2 taken into the cell is recycled to the synapse or sent for destruction. It is, however, still unknown how brain activity affects these processes, and reciprocally how alterations of NL2 number at the synapse affects its strength. Our research is therefore aimed at answering the following related questions:- Under what physiologically relevant conditions is the stability of NL2 at the synapse altered?- How do the various binding partners of NL2 regulate its stability at the synapse, as well as its endocytosis, recycling and degradation?- How do changes in the amount of NL2 at the synapse affect the strength of the inhibitory synapse?Ultimately, by gaining molecular insight into how inhibitory synapses are formed and regulated, we will better understand how wiring in the brain is controlled. In addition, since synaptic dysfunction is implicated in many neurodegenerative and neuropsychiatric diseases, our proposed work may also lead to an improved understanding of diseases such as epilepsy, stroke, Alzheimer's disease, Huntington's disease and schizophrenia, and may suggest targets for therapeutic intervention. A detailed understanding of the processes that we study for NL2, will also have implications for other Neuroligins, synaptic membrane proteins, and membrane proteins in non-neuronal cells. Thus, our research may contribute to understanding basic cell biological principles as well as specifically how connections in the brain are formed and maintained.
神经细胞通过被称为突触的特殊的细胞间接触点相互交流。在突触前一侧,输入神经元释放神经递质,激活位于突触后一侧接收神经元上的特殊神经递质受体。突触在大脑信号传导中可以起到兴奋(激活)或抑制(灭活)的作用。要使大脑正常工作,重要的是突触的正确形成,即突触前和突触后的两侧精确地相互相对,并且大脑活动得到适当的调节。如果突触在发育过程中连接不正确,或者在以后的生活中出现问题,这可能会导致毁灭性的神经精神疾病和神经退行性大脑疾病,如精神分裂症、自闭症和阿尔茨海默病。神经脂素蛋白家族在突触的形成和维持中起着关键作用。它们位于突触后侧的膜上,通过与突触前侧的Neurexin蛋白结合,在突触间隙上架起桥梁。神经胶质素-2 (NL2)特别位于抑制性突触,在那里它诱导蛋白卟啉聚集形成一个支架。我们中枢神经系统的主要抑制性神经递质受体,GABA-A受体,然后在突触上被葛菲林和LHFPL4稳定。突触可以根据神经活动的变化改变其强度,神经活动是学习和记忆等关键大脑功能的重要特性,也是维持兴奋和抑制之间平衡的重要特性。突触反应的强度可以通过改变支架的大小和附着的神经递质受体的数量来调节。通过其稳定突触的作用,NL2可能是突触后膜中GABA-A受体数量的关键调节因子,从而调节大脑中抑制性突触强度和信息处理。然而,关于控制突触中NL2数量的分子机制,或其进出突触的动态运动,我们知之甚少。我们有初步的数据表明,大脑活动导致细胞表面NL2的数量发生变化,这是通过突触释放NL2并将其摄取到细胞中(这一过程称为内吞作用)。我们还发现了一些与NL2相互作用的新蛋白质,这些蛋白质可能与NL2在突触中的稳定有关,或者调节进入细胞的NL2是被循环到突触还是被送去破坏。然而,大脑活动如何影响这些过程,以及突触中NL2数量的变化如何影响其强度,目前尚不清楚。因此,我们的研究旨在回答以下相关问题:-在什么生理相关条件下突触中NL2的稳定性被改变?- NL2的各种结合伙伴如何调节其在突触中的稳定性,以及其内吞、再循环和降解?-突触中NL2数量的变化如何影响抑制性突触的强度?最终,通过深入了解抑制性突触是如何形成和调节的,我们将更好地了解大脑中的线路是如何被控制的。此外,由于突触功能障碍与许多神经退行性疾病和神经精神疾病有关,我们提出的工作也可能导致对癫痫、中风、阿尔茨海默病、亨廷顿病和精神分裂症等疾病的更好理解,并可能为治疗干预提供目标。我们对NL2的研究过程的详细了解,也将对其他神经素、突触膜蛋白和非神经元细胞中的膜蛋白产生影响。因此,我们的研究可能有助于理解基本的细胞生物学原理,特别是大脑中的连接是如何形成和维持的。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
PKA-mediated phosphorylation of Neuroligin-2 regulates its cell surface expression and synaptic stabilisation
PKA 介导的 Neuroligin-2 磷酸化调节其细胞表面表达和突触稳定
  • DOI:
    10.1101/2020.07.23.218008
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Halff E
  • 通讯作者:
    Halff E
Physics-based Deep Learning for Imaging Neuronal Activity via Two-photon and Light Field Microscopy
基于物理的深度学习通过双光子和光场显微镜对神经元活动进行成像
  • DOI:
    10.1101/2022.10.11.511633
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Verinaz-Jadan H
  • 通讯作者:
    Verinaz-Jadan H
SARS-CoV-2 triggers pericyte-mediated cerebral capillary constriction.
Phosphorylation of neuroligin-2 by PKA regulates its cell surface abundance and synaptic stabilization.
PKA 磷酸化 Neuroligin-2 可调节其细胞表面丰度和突触稳定性。
  • DOI:
    10.1126/scisignal.abg2505
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Halff EF
  • 通讯作者:
    Halff EF
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Josef Kittler其他文献

Geometry-Aware Graph Embedding Projection Metric Learning for Image Set Classification
用于图像集分类的几何感知图嵌入投影度量学习
Correlation tracking with implicitly extending search region
隐式扩展搜索区域的相关跟踪
  • DOI:
    10.1007/s00371-020-01850-4
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qiang Qian;Xiao-Jun Wu;Josef Kittler;Tian-Yang Xu
  • 通讯作者:
    Tian-Yang Xu
Subspace clustering via joint ℓ1, 2 and ℓ2, 1 norms
通过联合 1, 2 和 2, 1 范数进行子空间聚类
  • DOI:
    10.1016/j.ins.2022.08.032
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.1
  • 作者:
    Wenhua Dong;Xiao-Jun Wu;Josef Kittler
  • 通讯作者:
    Josef Kittler
Learning Feature Restoration Transformer for Robust Dehazing Visual Object Tracking
  • DOI:
    10.1007/s11263-024-02182-9
  • 发表时间:
    2024-07-12
  • 期刊:
  • 影响因子:
    9.300
  • 作者:
    Tianyang Xu;Yifan Pan;Zhenhua Feng;Xuefeng Zhu;Chunyang Cheng;Xiao-Jun Wu;Josef Kittler
  • 通讯作者:
    Josef Kittler

Josef Kittler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Josef Kittler', 18)}}的其他基金

Multimodal Video Search by Examples (MVSE)
多模态视频搜索示例 (MVSE)
  • 批准号:
    EP/V002856/1
  • 财政年份:
    2021
  • 资助金额:
    $ 70.12万
  • 项目类别:
    Research Grant
(N00014-16-R-FO05) Semantic Information Pursuit for Multimodal Data Analysis
(N00014-16-R-FO05) 多模态数据分析的语义信息追踪
  • 批准号:
    EP/R018456/1
  • 财政年份:
    2018
  • 资助金额:
    $ 70.12万
  • 项目类别:
    Research Grant
Synaptic and circuit pathology in a mouse model of AP4 deficiency syndrome
AP4 缺乏综合征小鼠模型的突触和回路病理学
  • 批准号:
    MR/N025644/1
  • 财政年份:
    2016
  • 资助金额:
    $ 70.12万
  • 项目类别:
    Research Grant
Face Matching for Automatic Identity Retrieval, Recognition, Verification and Management
用于自动身份检索、识别、验证和管理的人脸匹配
  • 批准号:
    EP/N007743/1
  • 财政年份:
    2016
  • 资助金额:
    $ 70.12万
  • 项目类别:
    Research Grant
Regulation of glutamate transporter EAAT2 activity lateral diffusion and membrane trafficking by palmitoylation and interacting proteins
通过棕榈酰化和相互作用蛋白调节谷氨酸转运蛋白 EAAT2 活性横向扩散和膜运输
  • 批准号:
    BB/I00274X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 70.12万
  • 项目类别:
    Research Grant
Audio and Video Based Speech Separation for Multiple Moving Sources Within a Room Environment
针对房间环境内多个移动源的基于音频和视频的语音分离
  • 批准号:
    EP/H050000/1
  • 财政年份:
    2010
  • 资助金额:
    $ 70.12万
  • 项目类别:
    Research Grant
Adaptive cognition for automated sports video annotation (ACASVA)
自动运动视频注释的自适应认知(ACASVA)
  • 批准号:
    EP/F069421/1
  • 财政年份:
    2009
  • 资助金额:
    $ 70.12万
  • 项目类别:
    Research Grant
Regulation of synaptic inhibition by GABAA receptor trafficking under normal conditions and in neurological and neuropsy
正常条件下以及神经病学和神经病理学中 GABAA 受体运输对突触抑制的调节
  • 批准号:
    G0802377/1
  • 财政年份:
    2009
  • 资助金额:
    $ 70.12万
  • 项目类别:
    Fellowship

相似国自然基金

Crocin 抑制 Hartley 豚鼠早期骨关节炎发生的 作用机制研究
  • 批准号:
    TGD24H060003
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
空气颗粒物通过调控白血病抑制因子参与影响IgA肾病进展的作用与机制研究
  • 批准号:
    82370711
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
利用人源性抗-MIF噬菌体抗体防治大肠癌肝转移的研究
  • 批准号:
    30470435
  • 批准年份:
    2004
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目

相似海外基金

Inhibitory regulation of hippocampal CA3 neuron activity, learning, and memory
海马 CA3 神经元活动、学习和记忆的抑制性调节
  • 批准号:
    10753861
  • 财政年份:
    2023
  • 资助金额:
    $ 70.12万
  • 项目类别:
Regulation of parallel recycling pathways at synaptic sites
突触位点平行回收途径的调节
  • 批准号:
    10538722
  • 财政年份:
    2022
  • 资助金额:
    $ 70.12万
  • 项目类别:
Regulation of parallel recycling pathways at synaptic sites
突触位点平行回收途径的调节
  • 批准号:
    10665064
  • 财政年份:
    2022
  • 资助金额:
    $ 70.12万
  • 项目类别:
Molecular and Cellular Mechanisms of Acoustic Startle Threshold Regulation
声惊吓阈值调节的分子和细胞机制
  • 批准号:
    10360545
  • 财政年份:
    2021
  • 资助金额:
    $ 70.12万
  • 项目类别:
Molecular and Cellular Mechanisms Underlying Activity Dependent Gene Regulation in Neurons
神经元活性依赖性基因调控的分子和细胞机制
  • 批准号:
    10469796
  • 财政年份:
    2021
  • 资助金额:
    $ 70.12万
  • 项目类别:
Molecular and Cellular Mechanisms of Acoustic Startle Threshold Regulation
声惊吓阈值调节的分子和细胞机制
  • 批准号:
    10211396
  • 财政年份:
    2021
  • 资助金额:
    $ 70.12万
  • 项目类别:
Phospho-regulation as a driver of inhibitory synapse function
磷酸调节作为抑制性突触功能的驱动因素
  • 批准号:
    10187339
  • 财政年份:
    2021
  • 资助金额:
    $ 70.12万
  • 项目类别:
Molecular and Cellular Mechanisms of Acoustic Startle Threshold Regulation
声惊吓阈值调节的分子和细胞机制
  • 批准号:
    10599887
  • 财政年份:
    2021
  • 资助金额:
    $ 70.12万
  • 项目类别:
Phospho-regulation as a driver of inhibitory synapse function
磷酸调节作为抑制性突触功能的驱动因素
  • 批准号:
    10371876
  • 财政年份:
    2021
  • 资助金额:
    $ 70.12万
  • 项目类别:
A Novel Role for Local Striatal Interneuron Regulation of Goal-Directed Action
局部纹状体中间神经元调节目标导向行动的新作用
  • 批准号:
    10338165
  • 财政年份:
    2020
  • 资助金额:
    $ 70.12万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了