A lattice lightsheet microscope for imaging highly dynamic processes in living cells and organisms.

晶格光片显微镜,用于对活细胞和生物体中的高度动态过程进行成像。

基本信息

  • 批准号:
    BB/S019286/1
  • 负责人:
  • 金额:
    $ 59.02万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Light microscopy lies at the heart of biological research. Ever since the light microscope was invented in the seventeenth century, it has been revealing profound insights into how cells function, grow, divide and die, and how individual cells work together to generate tissues and organisms. The development of fluorescent probes for studying protein function in living cells coupled with extraordinary progress in microscope design have signalled an era of unprecedented insight into cell function via light microscopy. This has been marked by two recent Nobel Prizes. One was awarded in 2008 for the discovery of green fluorescent protein from jelly fish, which can be joined to a protein of interest by genetic engineering. The chimeric protein can then be expressed and observed in living cells. Since then, proteins that fluoresce in different colours have been identified, allowing researchers to follow multiple proteins in the same cell at the same time, providing vital information about cell behaviour. The second Nobel Prize was awarded in 2014 for the development of super-resolution microscopy. These methods gave a way of seeing structures with great level of detail than possible using diffraction-limited techniques, where the resolution is set by Ernst Abbe's nineteenth century equation.One of the 2014 winners, Eric Betzig, has gone on to design a microscope called the lattice lightsheet microscope (LLSM). This technological breakthrough has many advantages. It captures images in 3D very rapidly, meaning that cellular structures that move very fast inside the cell can now be followed in 3D. For slower-moving structures, it offers the option of super-resolution imaging within living cells. Lastly, and perhaps most importantly, the lattice light-sheet illumination is very gentle on cells, tissues and organisms, because it causes minimal photo-damage. This means that cellular processes can be followed for longer times than previously possible, and at faster speeds and higher resolution.This ground-breaking technology is now commercially available from Intelligent Imaging Innovations (3i), and here we propose to use the LLSM to image a wide range of different cellular structures within living cells over timescales ranging from minutes to days. We will be able to analyse the behaviour of fast-moving components such as endosomes and mRNA particles, and the cargoes transported by fast axonal transport in nerve cells. We will also image structural components of the cell's cytoskeleton - actin filaments and microtubules - as they work in processes as varied as cell division, migration and cell-cell communication. The LLSM's ability to image samples of different thickness will allow us to follow these processes in samples ranging from single cells through to cells in tissue samples or 3D cultures. In addition, we can use it to watch cell behaviour in developing embryos of fruit fly and zebrafish. The LLSM will benefit at least 24 groups of highly productive scientists holding significant BBSRC funding. This will also enhance the training of the next generation of researchers in a sophisticated light microscopic technique and the data analysis needed to interpret the results. In addition, the quantitative data generated will be used enhance collaborations between biologists, mathematicians and computer scientists, so promoting interdisciplinary research.
光学显微镜是生物学研究的核心。自从光学显微镜在17世纪被发明以来,它一直在揭示细胞如何发挥功能、生长、分裂和死亡,以及单个细胞如何协同工作以产生组织和有机体的深刻见解。用于研究活细胞中蛋白质功能的荧光探针的发展,加上显微镜设计的非凡进步,标志着通过光学显微镜对细胞功能进行前所未有的洞察的时代。最近的两次诺贝尔奖都体现了这一点。2008年,一个奖项是因为发现了水母中的绿色荧光蛋白,这种蛋白可以通过基因工程与感兴趣的蛋白质结合。然后可以在活细胞中表达和观察嵌合蛋白。从那时起,已经确定了不同颜色荧光的蛋白质,使研究人员能够同时跟踪同一细胞中的多种蛋白质,提供有关细胞行为的重要信息。第二个诺贝尔奖于2014年颁发,以表彰超分辨率显微镜的发展。这些方法提供了一种比使用衍射限制技术更详细地观察结构的方法,其中分辨率由恩斯特·阿贝(Ernst Abbe)的十九世纪方程设定。2014年获奖者之一埃里克·贝齐格(Eric Betzig)继续设计了一种称为晶格光片显微镜(LLSM)的显微镜。这项技术突破有很多优点。它可以非常快速地捕捉3D图像,这意味着现在可以在3D中跟踪细胞内快速移动的细胞结构。对于移动较慢的结构,它提供了活细胞内超分辨率成像的选择。最后,也许也是最重要的,点阵光片照明对细胞、组织和生物体非常温和,因为它造成的光损伤最小。这意味着细胞过程可以比以前更长的时间,更快的速度和更高的分辨率。这项突破性的技术现在可以从Intelligent Imaging Innovations(3 i)商业化,在这里我们建议使用LLSM在从几分钟到几天的时间尺度内对活细胞内各种不同的细胞结构进行成像。我们将能够分析快速移动的成分,如内体和mRNA颗粒的行为,以及神经细胞中快速轴突运输的货物。我们还将对细胞骨架的结构成分-肌动蛋白丝和微管-进行成像,因为它们在细胞分裂,迁移和细胞间通讯等过程中发挥作用。LLSM能够对不同厚度的样本进行成像,这将使我们能够在从单细胞到组织样本或3D培养物中的细胞的样本中跟踪这些过程。此外,我们还可以用它来观察果蝇和斑马鱼胚胎发育过程中的细胞行为。LLSM将使至少24组拥有大量BBSRC资金的高产科学家受益。这也将加强下一代研究人员在复杂的光学显微镜技术和解释结果所需的数据分析方面的培训。此外,生成的定量数据将用于加强生物学家,数学家和计算机科学家之间的合作,从而促进跨学科研究。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On demand expression control of endogenous genes with DExCon, DExogron and LUXon reveals differential dynamics of Rab11 family members.
用DEXCON,DEXOGRON和LUXON对内源基因的按需表达控制揭示了Rab11家族成员的差异动力学。
  • DOI:
    10.7554/elife.76651
  • 发表时间:
    2022-06-16
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Gemperle, Jakub;Harrison, Thomas S.;Flett, Chloe;Adamson, Antony D.;Caswell, Patrick T.
  • 通讯作者:
    Caswell, Patrick T.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Viki Allan其他文献

Viki Allan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Viki Allan', 18)}}的其他基金

Role of kinesin light chain 1 in binding to specific cargoes.
驱动蛋白轻链 1 在与特定货物结合中的作用。
  • 批准号:
    BB/V008307/1
  • 财政年份:
    2021
  • 资助金额:
    $ 59.02万
  • 项目类别:
    Research Grant
Cytoplasmic dynein and KASH5: partners in fertility
细胞质动力蛋白和 KASH5:生育的伙伴
  • 批准号:
    BB/N006933/1
  • 财政年份:
    2016
  • 资助金额:
    $ 59.02万
  • 项目类别:
    Research Grant
The regulation of dynein mechanochemistry in vivo
体内动力蛋白机械化学的调节
  • 批准号:
    BB/H017828/1
  • 财政年份:
    2010
  • 资助金额:
    $ 59.02万
  • 项目类别:
    Research Grant
Co-operating kinesins: understanding redundancy in microtubule motor systems
协作驱动蛋白:了解微管运动系统中的冗余
  • 批准号:
    BB/G012652/1
  • 财政年份:
    2009
  • 资助金额:
    $ 59.02万
  • 项目类别:
    Research Grant
Multi-dimensional imaging of cellular dynamics and function
细胞动力学和功能的多维成像
  • 批准号:
    BB/D524467/1
  • 财政年份:
    2006
  • 资助金额:
    $ 59.02万
  • 项目类别:
    Research Grant

相似海外基金

A Dual Camera Lattice Lightsheet Microscope To Deliver Transformative Multi-Channel Volume Imaging
双摄像头晶格光片显微镜可提供变革性的多通道体积成像
  • 批准号:
    BB/X019578/1
  • 财政年份:
    2023
  • 资助金额:
    $ 59.02万
  • 项目类别:
    Research Grant
Lightsheet Microscope
光片显微镜
  • 批准号:
    10632804
  • 财政年份:
    2023
  • 资助金额:
    $ 59.02万
  • 项目类别:
Zeiss Lightsheet 7 Microscope: Transforming Imaging for Bioscience Discoveries
Zeiss Lightsheet 7 显微镜:改变生物科学发现的成像
  • 批准号:
    BB/X01987X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 59.02万
  • 项目类别:
    Research Grant
Transformative lightsheet microscopy techniques for subcellular imaging in physiologically relevant 3D environments
用于生理相关 3D 环境中亚细胞成像的变革性光片显微镜技术
  • 批准号:
    10712248
  • 财政年份:
    2023
  • 资助金额:
    $ 59.02万
  • 项目类别:
Zeiss Lightsheet 7
蔡司 Lightsheet 7
  • 批准号:
    10430494
  • 财政年份:
    2022
  • 资助金额:
    $ 59.02万
  • 项目类别:
Lightsheet Microscope for the UAB High-Resolution Imaging Facility
用于 UAB 高分辨率成像设备的光片显微镜
  • 批准号:
    10429045
  • 财政年份:
    2022
  • 资助金额:
    $ 59.02万
  • 项目类别:
Zeiss Lightsheet 7 microscope
蔡司 Lightsheet 7 显微镜
  • 批准号:
    10176906
  • 财政年份:
    2021
  • 资助金额:
    $ 59.02万
  • 项目类别:
A Lightsheet Microscope for an Established Core Facility
适用于已建立的核心设施的光片显微镜
  • 批准号:
    10172216
  • 财政年份:
    2021
  • 资助金额:
    $ 59.02万
  • 项目类别:
Lightsheet Microscope
光片显微镜
  • 批准号:
    455153711
  • 财政年份:
    2021
  • 资助金额:
    $ 59.02万
  • 项目类别:
    Major Research Instrumentation
The Big Eye-dea: 3D/4D single cell resolution imaging of the mouse eye using lightsheet microscopy
Big Eye-dea:使用光片显微镜对小鼠眼睛进行 3D/4D 单细胞分辨率成像
  • 批准号:
    9533158
  • 财政年份:
    2017
  • 资助金额:
    $ 59.02万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了