Animal affect, welfare, and decision-making: a computational modelling approach

动物情感、福利和决策:计算建模方法

基本信息

  • 批准号:
    BB/T002654/1
  • 负责人:
  • 金额:
    $ 67.96万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    未结题

项目摘要

People care about animal welfare because they assume that non-human animals including mammals and birds are able to experience negative emotions and hence to suffer. In order to monitor welfare and how it is affected by housing and husbandry, we therefore need accurate indicators of animal emotion. Because we can't be sure what other animals feel, and even whether they have the capacity for conscious experiences, our measures are necessarily indirect. Nevertheless, animal welfare scientists, neuroscientists and others are working to develop new and better indicators. An area of growing interest is the use of cognitive markers of emotion, for example how different affective states alter the way in which decisions are made. We have developed a measure based on human psychology findings that people in negative affective states make more negative or pessimistic judgements about ambiguous events than happier people. Over 100 studies in a range of species have now been published using the 'judgement bias' (JB) test, and a meta-analysis that we are conducting indicates that, like humans, animals in more negative states exhibit more 'pessimistic' judgement biases. However, it also detects considerable variation in study findings. One important reason for this, which is receiving increasing attention in human cognitive neuroscience, is that emotional states influence a variety of hidden underlying decision processes which in turn determine the actual decisions made. Such processes can be revealed by computational modelling of data from human decision-making tasks and include not only a person's expectations of good or bad decision outcomes, but also how they value these outcomes, how well they learn about changes in outcomes, and how strongly they adhere to what they have learnt when making a new decision. Anxious people, for example, appear to upgrade the anticipated unpleasantness of negative outcomes whilst depressed people downgrade the expected value of rewarding outcomes. Computational modelling techniques thus allow us to reveal hidden decision processes, evaluate how they are altered by emotions, and hence shed light on the complex links between affect and the actual decisions that we observe.We will develop and implement a computational modelling approach to identify hidden decision-processes in animals, and how these are influenced by affective states. We will use a variant of our JB task that allows appropriate modelling, and a more naturalistic 'risky choice' test that doesn't require the pre-training necessary in JB tasks and hence is quicker to implement. We will induce both short- and longer-term positive and negative affective states using standardised manipulations. Computational modelling will then be employed to investigate how these influence underlying decision-making processes such as those previously identified in human studies. Our work will introduce a novel computational modelling approach to the study of animal affect and welfare. It will identify new decision-making markers of affective states, including those that are replicable across decision tasks and hence particularly robust and reliable. It will also provide a deeper fundamental understanding of links between affect and decision-making processes in animals, and how similar these are to those observed in humans. This will indicate evolutionary similarities across species, and the potential for developing novel and translatable cognitive measures of affective state usable in animal welfare science and other fields. In order to open up the approach to other researchers, we will develop a Matlab toolbox, complete with code, examples, and documentation, that others can use to implement computational methods using similarly-designed JB tasks and our new risky choice task. In this way we hope to drive a step change in analytical methods, theoretical understanding, and new measurement tools that will advance animal welfare science.
人们关心动物福利,是因为他们认为包括哺乳动物和鸟类在内的非人类动物也会经历负面情绪,因此也会遭受痛苦。因此,为了监测动物福利以及它如何受到住房和畜牧业的影响,我们需要准确的动物情感指标。因为我们不能确定其他动物的感受,甚至不能确定它们是否有意识体验的能力,我们的测量必然是间接的。尽管如此,动物福利科学家、神经科学家和其他人正在努力开发新的、更好的指标。人们越来越感兴趣的一个领域是使用情绪的认知标记,例如,不同的情感状态如何改变做出决定的方式。我们根据人类心理学的发现开发了一种测量方法,即处于消极情感状态的人比快乐的人对模棱两可的事件做出更消极或悲观的判断。使用“判断偏差”(JB)测试已经发表了100多篇关于各种物种的研究,我们正在进行的荟萃分析表明,像人类一样,处于更消极状态的动物表现出更多的“悲观”判断偏差。然而,它也发现了研究结果的相当大的差异。一个重要的原因是,情绪状态影响了各种隐藏的潜在决策过程,而这些决策过程反过来又决定了实际做出的决定,这在人类认知神经科学中受到越来越多的关注。这些过程可以通过对人类决策任务的数据进行计算建模来揭示,不仅包括一个人对好或坏决策结果的预期,还包括他们如何评价这些结果,他们对结果变化的了解程度,以及他们在做出新决策时坚持所学知识的程度。例如,焦虑的人似乎会升级对负面结果的预期不愉快,而抑郁的人则会降低对有益结果的预期价值。因此,计算建模技术使我们能够揭示隐藏的决策过程,评估它们是如何被情绪改变的,从而揭示情感与我们观察到的实际决策之间的复杂联系。我们将开发和实施一种计算建模方法来识别动物中隐藏的决策过程,以及这些过程如何受到情感状态的影响。我们将使用一个允许适当建模的JB任务的变体,以及一个更自然的“风险选择”测试,它不需要JB任务中必要的预训练,因此实现起来更快。我们将使用标准化操作诱导短期和长期的积极和消极情感状态。然后将采用计算模型来调查这些因素如何影响潜在的决策过程,例如先前在人类研究中确定的那些决策过程。我们的工作将引入一种新的计算建模方法来研究动物的情感和福利。它将确定新的情感状态的决策标记,包括那些在决策任务中可复制的标记,因此特别健壮和可靠。它还将提供对动物情感和决策过程之间联系的更深入的基本理解,以及这些过程与在人类中观察到的相似程度。这将表明物种之间的进化相似性,以及开发可用于动物福利科学和其他领域的情感状态的新颖和可翻译的认知测量的潜力。为了向其他研究人员开放这种方法,我们将开发一个Matlab工具箱,其中包含代码、示例和文档,其他人可以使用类似设计的JB任务和我们的新风险选择任务来实现计算方法。通过这种方式,我们希望推动分析方法,理论理解和新的测量工具的一步变化,这将推动动物福利科学。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bridging the Gap: Human Emotions and Animal Emotions.
  • DOI:
    10.1007/s42761-022-00125-6
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mendl, Michael;Neville, Vikki;Paul, Elizabeth S.
  • 通讯作者:
    Paul, Elizabeth S.
A mapping review of refinements to laboratory rat housing and husbandry.
对实验室大鼠饲养和饲养改进的绘图审查。
  • DOI:
    10.1038/s41684-023-01124-1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Neville V
  • 通讯作者:
    Neville V
Using Primary Reinforcement to Enhance Translatability of a Human Affect and Decision-Making Judgment Bias Task.
使用初级强化来增强人类情感和决策判断偏差任务的可翻译性。
Understanding the Behaviour and Improving the Welfare of Pigs.
了解猪的行为并改善猪的福利。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Murphy E
  • 通讯作者:
    Murphy E
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Mendl其他文献

Cognitive bias and affective state
认知偏差与情感状态
  • DOI:
    10.1038/427312a
  • 发表时间:
    2004-01-22
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Emma J. Harding;Elizabeth S. Paul;Michael Mendl
  • 通讯作者:
    Michael Mendl
Variation in domestic cat behaviour towards humans: a paternal effect
  • DOI:
    10.1016/s0003-3472(86)80275-5
  • 发表时间:
    1986-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dennis C. Turner;Julie Feaver;Michael Mendl;Patrick Bateson
  • 通讯作者:
    Patrick Bateson
Assessing the welfare state
评估福利国家
  • DOI:
    10.1038/35065194
  • 发表时间:
    2001-03-01
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Michael Mendl
  • 通讯作者:
    Michael Mendl
A novel method for testing social recognition in young pigs and the modulating effects of relocation
  • DOI:
    10.1016/j.applanim.2005.09.008
  • 发表时间:
    2006-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Adriana S. Souza;Jarno Jansen;Robert J. Tempelman;Michael Mendl;Adroaldo J. Zanella
  • 通讯作者:
    Adroaldo J. Zanella
Individual behavior and housing setup interact to influence markers of welfare in the critically endangered Hawaiian crow
个体行为和住房设置相互作用,影响极度濒危的夏威夷乌鸦福利的标志
  • DOI:
    10.1016/j.applanim.2024.106475
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Rachel P. Gosselin;Alison M. Flanagan;Michael Mendl;Katelynn Earnest;Bryce Masuda;Alison L. Greggor
  • 通讯作者:
    Alison L. Greggor

Michael Mendl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Mendl', 18)}}的其他基金

Individual differences in affective processing and implications for animal welfare: a reaction norm approach
情感处理的个体差异及其对动物福利的影响:反应规范方法
  • 批准号:
    BB/X014673/1
  • 财政年份:
    2024
  • 资助金额:
    $ 67.96万
  • 项目类别:
    Research Grant
Animal Welfare Research Network: Building research quality, capacity and impact
动物福利研究网络:建设研究质量、能力和影响力
  • 批准号:
    BB/W001551/1
  • 财政年份:
    2022
  • 资助金额:
    $ 67.96万
  • 项目类别:
    Research Grant
Animal Welfare Research Network
动物福利研究网络
  • 批准号:
    BB/S012974/1
  • 财政年份:
    2019
  • 资助金额:
    $ 67.96万
  • 项目类别:
    Research Grant
Brazil Partnering Award: Welfare and health assessment of managed neotropical mammals in Brazil: developing strategies for sustainable food production
巴西合作奖:巴西管理的新热带哺乳动物的福利和健康评估:制定可持续粮食生产战略
  • 批准号:
    BB/R021112/1
  • 财政年份:
    2018
  • 资助金额:
    $ 67.96万
  • 项目类别:
    Research Grant
Validating inactivity in the home-cage as a depression-like state indicator in mice
验证家笼中的不活动作为小鼠抑郁状态的指标
  • 批准号:
    BB/P019218/1
  • 财政年份:
    2017
  • 资助金额:
    $ 67.96万
  • 项目类别:
    Research Grant
Development and validation of an automated test of animal affect and welfare for laboratory rodents
实验室啮齿动物动物影响和福利自动测试的开发和验证
  • 批准号:
    NC/K00008X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 67.96万
  • 项目类别:
    Research Grant
The defence cascade as an indicator of animal welfare in the lab and field
防御级联作为实验室和现场动物福利的指标
  • 批准号:
    BB/I005641/1
  • 财政年份:
    2011
  • 资助金额:
    $ 67.96万
  • 项目类别:
    Research Grant
Translating new measures of animal affect and welfare to on-farm situations
将动物影响和福利的新措施应用于农场情况
  • 批准号:
    BB/J004197/1
  • 财政年份:
    2011
  • 资助金额:
    $ 67.96万
  • 项目类别:
    Research Grant

相似海外基金

Developing a translational and computational approach to studying animal affect and welfare
开发一种翻译和计算方法来研究动物影响和福利
  • 批准号:
    BB/X009696/1
  • 财政年份:
    2023
  • 资助金额:
    $ 67.96万
  • 项目类别:
    Fellowship
Impacts of hurricanes and social buffering on biological aging in a free-ranging animal model
飓风和社会缓冲对自由放养动物模型生物衰老的影响
  • 批准号:
    10781021
  • 财政年份:
    2023
  • 资助金额:
    $ 67.96万
  • 项目类别:
Modernizing a Shared-Use Animal Facility Supporting Neuroscience Research at an HBCU
对 HBCU 支持神经科学研究的共享动物设施进行现代化改造
  • 批准号:
    10533649
  • 财政年份:
    2022
  • 资助金额:
    $ 67.96万
  • 项目类别:
Modernization of the UTHSC Animal Care Facility
UTHSC 动物护理设施的现代化
  • 批准号:
    10533520
  • 财政年份:
    2022
  • 资助金额:
    $ 67.96万
  • 项目类别:
Toxicological screening in a single animal format
单一动物形式的毒理学筛查
  • 批准号:
    10483244
  • 财政年份:
    2022
  • 资助金额:
    $ 67.96万
  • 项目类别:
Will production veterinary medicine and animal welfare affect disease and injury treatment costs in dairy farming?
生产兽药和动物福利是否会影响奶牛养殖的疾病和伤害治疗成本?
  • 批准号:
    21H02291
  • 财政年份:
    2021
  • 资助金额:
    $ 67.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Piezoelectric Ring Mounted Oscillated Syringe System for Lower Distress, Lower Force, Laboratory Animal Vascular Access and Injection to Improve Data Quality and Laboratory Animal Welfare
压电环安装式振荡注射器系统,可降低压力、降低实验动物血管通路和注射力,从而提高数据质量和实验动物福利
  • 批准号:
    9200530
  • 财政年份:
    2016
  • 资助金额:
    $ 67.96万
  • 项目类别:
Development and validation of an automated test of animal affect and welfare for laboratory rodents
实验室啮齿动物动物影响和福利自动测试的开发和验证
  • 批准号:
    NC/K00008X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 67.96万
  • 项目类别:
    Research Grant
Translating new measures of animal affect and welfare to on-farm situations
将动物影响和福利的新措施应用于农场情况
  • 批准号:
    BB/J004197/1
  • 财政年份:
    2011
  • 资助金额:
    $ 67.96万
  • 项目类别:
    Research Grant
Core--Animal Model, Analytical Chemistry and Biochemistry
核心--动物模型、分析化学和生物化学
  • 批准号:
    7457708
  • 财政年份:
    2007
  • 资助金额:
    $ 67.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了