Defining the molecular signals that specify Langerhans cell fate in the adult epidermis.

定义指定成人表皮朗格汉斯细胞命运的分子信号。

基本信息

  • 批准号:
    BB/T005246/1
  • 负责人:
  • 金额:
    $ 67.78万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Our research asks the basic question "how is damage to immune cells repaired so that the skin can protect us from disease?"The skin is the largest organ in the body and forms a physical barrier that protects us from injury and dehydration. However, the skin is also full of immune cells which are specialised at sensing infection. As such, we can think of the skin as an important immune barrier that protects us from germs that enter the body via cuts and wounds. A specialised group of cells called Langerhans cells (LC) make a network throughout the outer layer of the skin, called the epidermis. Any germ entering the body via the skin will have to pass though this network and LC are really important for sensing this invasion. LC belong to a group of white blood cells called macrophages. However, within this group LC are special because they enter the epidermis before we are born and then remain there for our whole life as a self-contained group of cells that divide very slowly to maintain the network. This is different from macrophages in other places like the gut that need to be constantly replaced by white blood cells called monocytes. The problem is that some diseases lead to the destruction of the LC network. The big question is then, "how is this damage repaired when the cells that originally formed the LC network before birth are no longer around?" This question is particularly important because the LC network also breaks down as we get older. Elderly people are more prone to skin infections and cancer, and also vaccines do not work as well. We think that the constant damage to the LC network over our life-span contributes to this loss of LC and poor protection by the skin immunological barrier.We have developed an experimental model in our laboratory in which LC are destroyed and we can track their replacement. We have just published exciting new data that show that this activates repair processes normally used in the gut and monocytes travel to the skin to replace the LC that were formed at birth. But in the epidermis this process is very inefficient; despite the fact that a lot of monocytes enter the epidermis, less than 5% of them will become proper long-lasting LC. This means that the resulting LC network is less dense. The aim of this study is to work out why so few monocytes can become LC and whether we can interfere with this process so that the LC network is repaired more quickly.We will answer 2 important questions:How do monocytes, which are short-lived cells, become long-lived LC in the epidermis?Why is the transition of monocytes into LC so inefficient, and can we intervene to improve this?We think that monocytes need to travel to specific parts of the epidermis around hair follicles where they will be able to pick up the signals they need to become LC. Competition for these sites is preventing most monocytes from accessing these signals and instead they die. Our lab is in a unique place to test this and answer our questions because we have already set up the models that we can use to track the development of new LC. We will investigate how entry into the epidermis triggers the switching on of important genes that instruct monocytes to become LC, and combine this with microscopy studies where we can directly see where monocytes sit in the skin and which other cells they might be talking to.By answering these questions, and identifying the factors that that limit numbers of LC in our skin, we will be able to develop new ways of enhancing this process in the future to increase LC numbers and re-build the skin immune barrier in people with chronic skin conditions and in older people.
我们的研究提出了一个基本的问题:“免疫细胞的损伤是如何修复的,从而使皮肤能够保护我们免受疾病的侵害?”“皮肤是人体最大的器官,形成了一个物理屏障,保护我们免受伤害和脱水。然而,皮肤也充满了专门感知感染的免疫细胞。因此,我们可以认为皮肤是一个重要的免疫屏障,保护我们免受通过伤口和伤口进入体内的细菌的侵害。一组专门的细胞称为朗格汉斯细胞(LC),在整个皮肤的外层(称为表皮)形成网络。任何通过皮肤进入身体的细菌都必须通过这个网络,LC对于感知这种入侵非常重要。LC属于一组称为巨噬细胞的白色血细胞。然而,在这组LC是特殊的,因为它们在我们出生之前进入表皮,然后作为一个独立的细胞群在我们的整个生命中保持在那里,分裂非常缓慢以维持网络。这与其他地方的巨噬细胞不同,比如肠道,需要不断被称为单核细胞的白色血细胞取代。问题是一些疾病导致LC网络的破坏。最大的问题是,“当出生前最初形成LC网络的细胞不再存在时,这种损伤是如何修复的?“这个问题特别重要,因为LC网络也会随着年龄的增长而崩溃。老年人更容易患皮肤感染和癌症,而且疫苗也不起作用。我们认为,在我们的一生中,LC网络的不断损坏导致LC的损失和皮肤免疫屏障的保护不力。我们在实验室开发了一个实验模型,在这个模型中,LC被破坏,我们可以跟踪它们的替代。我们刚刚发表了令人兴奋的新数据,表明这激活了肠道中通常使用的修复过程,单核细胞进入皮肤以取代出生时形成的LC。但是在表皮中,这个过程是非常低效的;尽管事实上有很多单核细胞进入表皮,但只有不到5%的单核细胞会成为适当的长效LC。这意味着所得到的LC网络密度较低。本研究的目的是找出为什么这么少的单核细胞可以成为LC,以及我们是否可以干预这一过程,使LC网络更快地修复。我们将回答两个重要的问题:单核细胞,这是短寿命的细胞,如何在表皮中成为长寿的LC?为什么单核细胞向LC的转化如此低效,我们可以干预以改善这一点吗?我们认为单核细胞需要移动到毛囊周围表皮的特定部位,在那里它们将能够获得它们成为LC所需的信号。对这些位点的竞争阻止了大多数单核细胞访问这些信号,相反,它们死亡。我们的实验室是一个独特的地方来测试这一点,并回答我们的问题,因为我们已经建立了模型,我们可以用来跟踪新的LC的发展。我们将研究进入表皮如何触发指示单核细胞成为LC的重要基因的开启,并将其与显微镜研究相结合,我们可以直接看到单核细胞在皮肤中的位置以及它们可能与哪些其他细胞交谈。通过回答这些问题,并确定限制我们皮肤中LC数量的因素,我们将能够在未来开发出增强这一过程的新方法,以增加LC数量,并在慢性皮肤病患者和老年人中重建皮肤免疫屏障。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Executable network of SARS-CoV-2-host interaction predicts drug combination treatments.
  • DOI:
    10.1038/s41746-022-00561-5
  • 发表时间:
    2022-02-14
  • 期刊:
  • 影响因子:
    15.2
  • 作者:
    Howell R;Clarke MA;Reuschl AK;Chen T;Abbott-Imboden S;Singer M;Lowe DM;Bennett CL;Chain B;Jolly C;Fisher J
  • 通讯作者:
    Fisher J
Metabolic adaption of mucosal macrophages: Is metabolism a driver of persistence across tissues?
  • DOI:
    10.1016/j.mucimm.2023.06.006
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Bennett, Clare L.;Perona-Wright, Georgia
  • 通讯作者:
    Perona-Wright, Georgia
Switching between tolerance and immunity: Do counter-acting gene networks dictate Langerhans cell function in the skin?
耐受性和免疫之间的切换:反作用基因网络是否决定皮肤中的朗格汉斯细胞功能?
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clare Bennett其他文献

‘I wouldn’t trust it …’ Digital transformation of young people’s sexual health services: a systems-informed qualitative enquiry
– 我不会相信它 – 年轻人性健康服务的数字化转型:基于系统的定性调查
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Clare Bennett;Daniel Kelly;Catherine Dunn;Massirfufulay Kpehe Musa;Honor Young;Zoë Couzens;John McSorley;Emma Jones
  • 通讯作者:
    Emma Jones
Lung transplant recipients' experiences of and attitudes towards self-management: a qualitative systematic review.
肺移植受者的自我管理经历和态度:定性系统评价。
  • DOI:
    10.11124/jbies-23-00070
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    A. Rebafka;Clare Bennett;Catherine Dunn;Dominic Roche;Clare Hawker;Deborah Edwards
  • 通讯作者:
    Deborah Edwards
Heterologous Expression of the Filarial Nematode Alt Gene Products Reveals Their Potential to Inhibit Immune Function Heterologous Expression of the Filarial Nematode Alt Gene Products Reveals Their Potential to Inhibit Immune Function
丝虫线虫 Alt 基因产物的异源表达揭示了其抑制免疫功能的潜力 丝虫线虫 Alt 基因产物的异源表达揭示了其抑制免疫功能的潜力
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Gomez;Clare Bennett;L. Prieto;Toni Aebischer;Clare C Blackburn;Rick M. Maizels;Lidia Nl;Lafuente;Prieto
  • 通讯作者:
    Prieto
Pathways to mental health care in active military populations across the Five-Eyes nations: An integrated perspective
五眼联盟国家现役军人心理健康护理途径:综合视角
  • DOI:
    10.1016/j.cpr.2021.102100
  • 发表时间:
    2022-02-01
  • 期刊:
  • 影响因子:
    12.200
  • 作者:
    Deniz Fikretoglu;Marie-Louise Sharp;Amy B. Adler;Stéphanie Bélanger;Helen Benassi;Clare Bennett;Richard Bryant;Walter Busuttil;Heidi Cramm;Nicola Fear;Neil Greenberg;Alexandra Heber;Fardous Hosseiny;Charles W. Hoge;Rakesh Jetly;Alexander McFarlane;Joshua Morganstein;Dominic Murphy;Meaghan O'Donnell;Andrea Phelps;David Pedlar
  • 通讯作者:
    David Pedlar
Assessing Military Mental Health during the Pandemic: A Five Country Collaboration
  • DOI:
    10.1007/s11920-024-01522-3
  • 发表时间:
    2024-10-12
  • 期刊:
  • 影响因子:
    6.700
  • 作者:
    Jennifer E. C. Lee;Clare Bennett;Neanne Bennett;Fethi Bouak;Irina Goldenberg;Kate Harrison;Heather McCuaig Edge;Amy Millikan Bell;Phillip J. Quartana;Maj Amos Simms;Amy B. Adler
  • 通讯作者:
    Amy B. Adler

Clare Bennett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clare Bennett', 18)}}的其他基金

Investigating repopulation of the epidermal Langerhans cell network by distinct progenitor populations
研究不同祖细胞群对表皮朗格汉斯细胞网络的重建
  • 批准号:
    BB/L001608/1
  • 财政年份:
    2014
  • 资助金额:
    $ 67.78万
  • 项目类别:
    Research Grant

相似国自然基金

配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
  • 批准号:
    82371616
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
  • 批准号:
    82370981
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
PET/MR多模态分子影像在阿尔茨海默病炎症机制中的研究
  • 批准号:
    82372073
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
  • 批准号:
    82371652
  • 批准年份:
    2023
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目
靶向PARylation介导的DNA损伤修复途径在恶性肿瘤治疗中的作用与分子机制研究
  • 批准号:
    82373145
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
O6-methyl-dGTP抑制胶质母细胞瘤的作用及分子机制研究
  • 批准号:
    82304565
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
OBSL1功能缺失导致多指(趾)畸形的分子机制及其临床诊断价值
  • 批准号:
    82372328
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Irisin通过整合素调控黄河鲤肌纤维发育的分子机制研究
  • 批准号:
    32303019
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
转录因子LEF1低表达抑制HMGB1致子宫腺肌病患者子宫内膜容受性低下的分子机制
  • 批准号:
    82371704
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
上皮细胞黏着结构半桥粒在热激保护中的作用机制研究
  • 批准号:
    31900545
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Defining Mechanisms of Dynamic mTORC1 Regulation in the Liver with Fasting and Feeding
禁食和进食时肝脏动态 mTORC1 调节的定义机制
  • 批准号:
    10386461
  • 财政年份:
    2022
  • 资助金额:
    $ 67.78万
  • 项目类别:
Defining Mechanisms of Dynamic mTORC1 Regulation in the Liver with Fasting and Feeding
禁食和进食时肝脏动态 mTORC1 调节的定义机制
  • 批准号:
    10609421
  • 财政年份:
    2022
  • 资助金额:
    $ 67.78万
  • 项目类别:
Defining the role of Taiman, the Drosophila homolog of AIB1, as a super-competitor in developing epithelia
定义 Taiman(AIB1 的果蝇同源物)作为上皮细胞发育中超级竞争者的作用
  • 批准号:
    10626071
  • 财政年份:
    2021
  • 资助金额:
    $ 67.78万
  • 项目类别:
Defining the Role of Microglia in the Synaptic Rewiring of the Hypothalamus by Early life Adversity
定义小胶质细胞在早年逆境下丘脑突触重新布线中的作用
  • 批准号:
    10360567
  • 财政年份:
    2021
  • 资助金额:
    $ 67.78万
  • 项目类别:
Defining the Role of Microglia in the Synaptic Rewiring of the Hypothalamus by Early life Adversity
定义小胶质细胞在早年逆境下丘脑突触重新布线中的作用
  • 批准号:
    10527373
  • 财政年份:
    2021
  • 资助金额:
    $ 67.78万
  • 项目类别:
Defining the role of Taiman, the Drosophila homolog of AIB1, as a super-competitor in developing epithelia
定义 Taiman(AIB1 的果蝇同源物)作为上皮细胞发育中超级竞争者的作用
  • 批准号:
    10455430
  • 财政年份:
    2021
  • 资助金额:
    $ 67.78万
  • 项目类别:
Defining the Role of Microglia in the Synaptic Rewiring of the Hypothalamus by Early life Adversity
定义小胶质细胞在早年逆境下丘脑突触重新布线中的作用
  • 批准号:
    10299740
  • 财政年份:
    2021
  • 资助金额:
    $ 67.78万
  • 项目类别:
Defining molecular signals that influence airway basal cell renewal and growth
定义影响气道基底细胞更新和生长的分子信号
  • 批准号:
    10321667
  • 财政年份:
    2020
  • 资助金额:
    $ 67.78万
  • 项目类别:
Defining molecular signals that influence airway basal cell renewal and growth
定义影响气道基底细胞更新和生长的分子信号
  • 批准号:
    10541145
  • 财政年份:
    2020
  • 资助金额:
    $ 67.78万
  • 项目类别:
Defining how T cells measure the strength of T cell receptor signals
定义 T 细胞如何测量 T 细胞受体信号的强度
  • 批准号:
    9895949
  • 财政年份:
    2020
  • 资助金额:
    $ 67.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了