Discovering novel microbial tools to mitigate the global phosphorus crisis: Identification of unique phosphatases in abundant rhizobacteria

发现缓解全球磷危机的新型微生物工具:鉴定丰富的根际细菌中独特的磷酸酶

基本信息

  • 批准号:
    BB/T009152/1
  • 负责人:
  • 金额:
    $ 38.78万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

The demand to provide sufficient food for a rising global population in the face of several emerging global issues, such as climate change and depletion of natural resources, has resulted in an urgent need to explore novel ways of generating sustainable agricultural practices. For example, currently, agriculture massively relies on the intensive application of rock phosphate fertiliser to maintain sufficient crop yields. Unfortunately, predictions suggest that we could run out of rock phosphate, which is only produced through geological processes, within the next 50-200 years. In addition, only 10-30% of rock phosphate, applied as fertiliser, is taken up by the plant for growth. This inefficiency leads to problems such as eutrophication, which has negative effects on our environment and wildlife. Most soils are actually saturated with numerous forms of inorganic and organic phosphorus (oP) that are unfortunately unavailable to plants without prior transformation to an available form, orthophosphate. Plants have a limited ability to mobilise phosphorus locked up in these various forms. Therefore, plants heavily rely on their associations with various microorganisms to assist them in acquiring bioavailable orthophosphate from various complex inorganic and organic forms. One of the major microbial mechanisms involved in transforming various soil oP complexes into orthophosphate is the production of extracellular phosphatases. Despite advances in understanding the role of microorganisms in mobilising soil oP, a complete and holistic understanding of this process remains unknown. Therefore, our ability to use microorganisms as a means of alleviating our reliance on rock phosphate is inadequate.I recently discovered that a group of abundant bacteria related to the genus Flavobacterium, that inhabit the rhizosphere of Oil Seed Rape, the UK's 3rd most economically important crop, exhibited both strong and constitutive phosphatase activity. This phenotype appears to be both unique to Flavobacterium and potentially beneficial for plants. However, the specific enzymes responsible for this interesting and unique phenotype remain unknown. The phylum Bacteroidetes (predominantly Flavobacteria), can constitute up to 65% of the plant microbiome and are major components of the human and marine microbiomes. Therefore, they likely have a major role in regulating environmental phosphorus dynamics. The major aim of this project is to therefore identify and characterise the novel unidentified phosphatases produced by these under-studied but interesting Flavobacteria. The two major outcomes of this project are 1) the discovery of novel microbial enzymes with potential agritech application 2) the discovery of new components in the soil oP cycle. Both of these outcomes will improve our knowledge regarding the global phosphorus cycle and sustainable agricultural practices, through increasing the efficiency by which plants utilise natural phosphorus resources locked up in soils.I will undertake this Fellowship in the Department of Animal and Plant Sciences at the University of Sheffield using the lab of Prof. Tim Daniell as a host. The Daniell lab is based in the state-of-the-art Arthur Willis Environmental Centre, home of the Plant Protection and Production (P3) Centre, which unifies a diverse set of plant and soil scientists. The University of Sheffield was placed in the top 10% of research excellence in the UK (2014 Research Excellence Framework) and 99% of research at Sheffield that is internationally recognised with 48% of research in Biological Sciences classed as 4* world leading. Therefore, undertaking this prestigious Fellowship at Sheffield will provide me with the best opportunities to embark on a career in academia and tackle the emerging issues related to food security.
面对气候变化和自然资源枯竭等几个新出现的全球问题,为不断增长的全球人口提供足够的食物的需求导致迫切需要探索产生可持续农业实践的新方法。例如,目前,农业大量依赖磷肥的大量施用来维持足够的作物产量。不幸的是,预测表明,在未来50-200年内,我们将耗尽只能通过地质过程产生的磷矿。此外,只有10-30%的磷矿用作肥料,被植物吸收用于生长。这种低效导致了诸如富营养化等问题,这对我们的环境和野生动物产生了负面影响。大多数土壤实际上充满了多种形式的无机和有机磷(oP),不幸的是,如果没有事先转化为一种有效的形式——正磷酸盐,植物就无法获得这些磷。植物动员磷的能力有限,磷被锁在这些不同的形式中。因此,植物在很大程度上依赖于它们与各种微生物的联系,以帮助它们从各种复杂的无机和有机形式中获取生物可利用的正磷酸盐。将各种土壤有机磷复合物转化为正磷酸盐的主要微生物机制之一是细胞外磷酸酶的产生。尽管在了解微生物在动员土壤有机磷中的作用方面取得了进展,但对这一过程的完整和整体理解仍然未知。因此,我们利用微生物作为减轻我们对磷矿依赖的手段的能力是不够的。我最近发现了一组丰富的与黄杆菌属有关的细菌,它们居住在英国第三大经济作物油菜的根际,表现出很强的组成性磷酸酶活性。这种表型似乎是黄杆菌所特有的,对植物也有潜在的益处。然而,导致这种有趣和独特表型的特定酶仍然未知。拟杆菌门(主要是黄杆菌门)可构成高达65%的植物微生物组,是人类和海洋微生物组的主要组成部分。因此,它们可能在调节环境磷动态中起主要作用。因此,该项目的主要目的是鉴定和表征这些研究不足但有趣的黄杆菌产生的新型未识别的磷酸酶。该项目的两个主要成果是:1)发现具有潜在农业技术应用前景的新型微生物酶;2)发现土壤有机磷循环中的新组分。这两项成果都将通过提高植物利用土壤中天然磷资源的效率,提高我们对全球磷循环和可持续农业实践的认识。我将在谢菲尔德大学动植物科学系接受Tim daniel教授的实验室作为东道主。丹尼尔实验室位于最先进的Arthur Willis环境中心,该中心是植物保护和生产(P3)中心的所在地,该中心汇集了各种各样的植物和土壤科学家。谢菲尔德大学在英国卓越研究(2014年卓越研究框架)中排名前10%,谢菲尔德大学99%的研究得到国际认可,48%的生物科学研究被列为4*世界领先。因此,在谢菲尔德大学获得这项享有盛誉的奖学金将为我提供最好的机会,让我走上学术界的职业生涯,并解决与粮食安全相关的新问题。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ubiquitous occurrence of a dimethylsulfoniopropionate ABC transporter in abundant marine bacteria.
  • DOI:
    10.1038/s41396-023-01375-3
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Li, Chun-Yang;Mausz, Michaela A.;Murphy, Andrew;Zhang, Nan;Chen, Xiu-Lan;Wang, Shu-Yan;Gao, Chao;Aguilo-Ferretjans, Maria M.;Silvano, Eleonora;Lidbury, Ian D. E. A.;Fu, Hui-Hui;Todd, Jonathan D.;Chen, Yin;Zhang, Yu-Zhong
  • 通讯作者:
    Zhang, Yu-Zhong
Bacterial catabolism of membrane phospholipids links marine biogeochemical cycles.
  • DOI:
    10.1126/sciadv.adf5122
  • 发表时间:
    2023-04-28
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Westermann, Linda M.;Lidbury, Ian D. E. A.;Li, Chun-Yang;Wang, Ning;Murphy, Andrew R. J.;Ferretjans, Maria del Mar Aguilo;Quareshy, Mussa;Shanmugan, Muralidharan;Torcello-Requena, Alberto;Silvano, Eleonora;Zhang, Yu-Zhong;Blindauer, Claudia A.;Chen, Yin;Scanlan, David J.
  • 通讯作者:
    Scanlan, David J.
Niche-adaptation in plant-associated Bacteroidetes favours specialisation in organic phosphorus mineralisation.
与植物相关的拟杆菌门的生态位适应有利于有机磷矿化的专业化。
  • DOI:
    10.1038/s41396-020-00829-2
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lidbury IDEA;Borsetto C;Murphy ARJ;Bottrill A;Jones AME;Bending GD;Hammond JP;Chen Y;Wellington EMH;Scanlan DJ
  • 通讯作者:
    Scanlan DJ
Crop management shapes the diversity and activity of DNA and RNA viruses in the rhizosphere.
  • DOI:
    10.1186/s40168-022-01371-3
  • 发表时间:
    2022-10-24
  • 期刊:
  • 影响因子:
    15.5
  • 作者:
    Muscatt, George;Hilton, Sally;Raguideau, Sebastien;Teakle, Graham;Lidbury, Ian D. E. A.;Wellington, Elizabeth M. H.;Quince, Christopher;Millard, Andrew;Bending, Gary D.;Jameson, Eleanor
  • 通讯作者:
    Jameson, Eleanor
A widely distributed phosphate-insensitive phosphatase presents a route for rapid organophosphorus remineralization in the biosphere.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ian Lidbury其他文献

Ian Lidbury的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Novel-miR-1134调控LHCGR的表达介导拟 穴青蟹卵巢发育的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
  • 批准号:
    82304677
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
  • 批准号:
    32002421
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
  • 批准号:
    31902347
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Role of intestinal serotonin transporter in post traumatic stress disorder
肠道血清素转运蛋白在创伤后应激障碍中的作用
  • 批准号:
    10590033
  • 财政年份:
    2024
  • 资助金额:
    $ 38.78万
  • 项目类别:
EAGER: Fertilizing the Tree of Life with novel taxa from deep-sea vent microbial metagenomes collected over time and space
EAGER:用随时间和空间收集的深海喷口微生物宏基因组中的新类群为生命之树施肥
  • 批准号:
    2409507
  • 财政年份:
    2024
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Standard Grant
Presymptom: development of a novel machine-learning-derived diagnostic test to rule out infection to enable enhanced clinical care and better targeted anti-microbial use
症状前:开发一种新型的机器学习诊断测试来排除感染,从而加强临床护理和更有针对性的抗菌药物使用
  • 批准号:
    10089281
  • 财政年份:
    2024
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Investment Accelerator
A novel microbial process breaking through the nitrogen cycling
突破氮循环的新型微生物过程
  • 批准号:
    DP230101340
  • 财政年份:
    2023
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Discovery Projects
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
  • 批准号:
    10549648
  • 财政年份:
    2023
  • 资助金额:
    $ 38.78万
  • 项目类别:
MAIT cells in lupus skin disease and photosensitivity
MAIT 细胞在狼疮皮肤病和光敏性中的作用
  • 批准号:
    10556664
  • 财政年份:
    2023
  • 资助金额:
    $ 38.78万
  • 项目类别:
Gut microbiome-mediated differences within the pre-malignant mammary tissue environment enhance early breast tumor metastasis
恶变前乳腺组织环境中肠道微生物介导的差异增强了早期乳腺肿瘤转移
  • 批准号:
    10594667
  • 财政年份:
    2023
  • 资助金额:
    $ 38.78万
  • 项目类别:
Data Science and Statistics Core
数据科学和统计核心
  • 批准号:
    10549489
  • 财政年份:
    2023
  • 资助金额:
    $ 38.78万
  • 项目类别:
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
  • 批准号:
    2219796
  • 财政年份:
    2023
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Standard Grant
Targeting host lipid metabolism to limit tissue damage in necrotizing fasciitis
靶向宿主脂质代谢以限制坏死性筋膜炎的组织损伤
  • 批准号:
    10639904
  • 财政年份:
    2023
  • 资助金额:
    $ 38.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了