The phycobilisome; how can light energy be converted to chemical energy with 95% efficiency?
%20藻胆体;%20如何将%20%20light%20energy%20be%20转化为%20chemical%20energy%20和%2095%%20效率?
基本信息
- 批准号:BB/T015640/1
- 负责人:
- 金额:$ 76.99万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With fossil fuel supplies decreasing and global warming effects growing, solar energy is increasingly in demand. However, current solar panel efficiency is low with solar panels on most homes in the UK operating at only 15-20% efficiency. Red microalgae, in contrast, achieve 95% efficiency through their photosynthetic machinery, termed phycobilisomes. Harnessing these molecular systems for renewable energy applications has tremendous potential for the biotechnological industry. However, first we need to know what these phycobilisomes are made of and, thus, what makes these biological machines operate with such high efficiency.This research proposal will, for the first time, use state-of-the-art mass spectrometry to characterise the phycobilisome in red microalgae. By addressing this research question from an entirely new angle, we will deepen our understanding of how the phycobilisome is constructed. The phycobilisome efficiency will be altered by changing the light conditions during microalgae growth. By tracking the structural features of the phycobilisome with photosynthetic efficiency, we will determine the critical factors that are necessary for efficient light transmission and as such determine which phycobilisome composition is the most efficient for photosynthesis. The findings of which are essential to allow us to construct these highly efficient microscopic machines for incorporation into solar panel devices. The results of this proposal will have broad impact in the academic community amongst structural biologists, mass spectrometrists and within the solar energy and microalgae communities, with any knowledge gained being rapidly translatable for industrial use.
随着化石燃料供应的减少和全球变暖影响的加剧,对太阳能的需求越来越大。然而,目前太阳能电池板的效率较低,英国大多数家庭的太阳能电池板的运行效率仅为 15-20%。相比之下,红色微藻通过其称为藻胆体的光合机制实现了 95% 的效率。利用这些分子系统进行可再生能源应用对于生物技术行业具有巨大的潜力。然而,首先我们需要知道这些藻胆体是由什么组成的,以及是什么使这些生物机器以如此高的效率运行。这项研究计划将首次使用最先进的质谱法来表征红色微藻中的藻胆体。通过从全新的角度解决这个研究问题,我们将加深对藻胆体如何构建的理解。通过改变微藻生长过程中的光照条件,可以改变藻胆体的效率。通过跟踪具有光合作用效率的藻胆体的结构特征,我们将确定有效光传输所需的关键因素,从而确定哪种藻胆体成分对光合作用最有效。这些发现对于我们构建这些高效的微型机器以纳入太阳能电池板设备至关重要。该提案的结果将对结构生物学家、质谱学家以及太阳能和微藻界的学术界产生广泛影响,所获得的任何知识都可以快速转化为工业用途。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Discovering protein-protein interaction stabilisers by native mass spectrometry.
- DOI:10.1039/d1sc01450a
- 发表时间:2021-08-18
- 期刊:
- 影响因子:8.4
- 作者:Bellamy-Carter J;Mohata M;Falcicchio M;Basran J;Higuchi Y;Doveston RG;Leney AC
- 通讯作者:Leney AC
The increasing role of structural proteomics in cyanobacteria.
- DOI:10.1042/ebc20220095
- 发表时间:2023-03-29
- 期刊:
- 影响因子:6.4
- 作者:
- 通讯作者:
Structural proteomics and protein complexes - special issue.
结构蛋白质组学和蛋白质复合物 - 特刊。
- DOI:10.1002/pmic.202000286
- 发表时间:2021
- 期刊:
- 影响因子:3.4
- 作者:Cooper HJ
- 通讯作者:Cooper HJ
Probing heavy metal binding to phycobiliproteins.
探测重金属结合与植物脂蛋白的结合。
- DOI:10.1111/febs.16396
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Rapid Cyanobacteria Species Identification with High Sensitivity Using Native Mass Spectrometry.
- DOI:10.1021/acs.analchem.1c03412
- 发表时间:2021-10-26
- 期刊:
- 影响因子:7.4
- 作者:Sound JK;Peters A;Bellamy-Carter J;Rad-Menéndez C;MacKechnie K;Green DH;Leney AC
- 通讯作者:Leney AC
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aneika Corrine Leney其他文献
Aneika Corrine Leney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aneika Corrine Leney', 18)}}的其他基金
Unravelling the light controlling switch in Cyanobacteria
解开蓝细菌中的光控制开关
- 批准号:
BB/Y006399/1 - 财政年份:2024
- 资助金额:
$ 76.99万 - 项目类别:
Research Grant
相似海外基金
Getting the green light: How chloroplast gene expression is activated by light
获得批准:叶绿体基因表达如何被光激活
- 批准号:
2869544 - 财政年份:2023
- 资助金额:
$ 76.99万 - 项目类别:
Studentship
Reclaiming the night sky for moths: what drives the flight-to-light response and how can this be mitigated?
为飞蛾夺回夜空:是什么驱动了飞向光反应以及如何减轻这种反应?
- 批准号:
2873554 - 财政年份:2023
- 资助金额:
$ 76.99万 - 项目类别:
Studentship
Understanding how Powered Componentry Impacts K2-Level Transfemoral Amputee Gait
了解动力组件如何影响 K2 级经股截肢者步态
- 批准号:
10585944 - 财政年份:2023
- 资助金额:
$ 76.99万 - 项目类别:
How do Arctic microalgae thrive in the chaotic light field of in-ice and under-ice marine habitats?
北极微藻如何在冰内和冰下海洋栖息地的混乱光场中繁衍生息?
- 批准号:
RGPIN-2020-06384 - 财政年份:2022
- 资助金额:
$ 76.99万 - 项目类别:
Discovery Grants Program - Individual
Using lattice light sheet microscopy to determine how the Spindle Assembly Checkpoint turns off
使用点阵光片显微镜确定主轴装配检查点如何关闭
- 批准号:
2869034 - 财政年份:2022
- 资助金额:
$ 76.99万 - 项目类别:
Studentship
How Does Attention and Arousal Interact to Modulate Vision?
注意力和唤醒如何相互作用来调节视力?
- 批准号:
10386446 - 财政年份:2022
- 资助金额:
$ 76.99万 - 项目类别:
Using photopolymerizable collagen matrices to investigate how progressive stiffening alters lymphatic trafficking of cancer and immune cells in pancreatic ductal adenocarcinoma
使用光聚合胶原基质研究渐进性硬化如何改变胰腺导管腺癌中癌症和免疫细胞的淋巴运输
- 批准号:
10359396 - 财政年份:2022
- 资助金额:
$ 76.99万 - 项目类别:
Death and Destruction: How the Ubiquitin Proteasome System Executes Linker Cell-type Death
死亡与破坏:泛素蛋白酶体系统如何执行连接细胞型死亡
- 批准号:
10464485 - 财政年份:2022
- 资助金额:
$ 76.99万 - 项目类别:
Investigation of how axon development is disrupted by the autism-causing Timothy syndrome mutation.
研究导致自闭症的蒂莫西综合征突变如何扰乱轴突发育。
- 批准号:
10645284 - 财政年份:2022
- 资助金额:
$ 76.99万 - 项目类别:














{{item.name}}会员




