A multi-user access laser tweezers, fluorescence and interference microscopy facility for understanding force at the molecular level
多用户访问激光镊子、荧光和干涉显微镜设备,用于了解分子水平的力
基本信息
- 批准号:BB/T017767/1
- 负责人:
- 金额:$ 96.76万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Biological systems are affected by numerous external factors such as temperature, osmotic stress, and force. The latter occurs on multiple size scales, DNA repair proteins are subject to collisions with other proteins bound to DNA, immune cells migrating to a site of infection must push past obstacles and muscles contract against load. These are all examples of the impact of force on biological systems. At present, we lack a clear understanding of these processes because of insufficient access to instruments capable of studying the effects of force. In this proposal, we aim to fill this gap by installing an optical trapping system at the University of Kent known as the Lumicks C-trap. Optical trapping (also known as laser tweezers), the discoverers of which were awarded the Nobel prize last year, is a technique that allows beads or other objects, including vesicles, cells or organelles to be captured by a focused beam of light. This 'tractor beam'-like technology then enables investigators to physically manipulate the biological system of interest. The architecture of such assays could include suspending a single molecule of DNA between two beads and then assembling protein complexes on the DNA by dipping the DNA into different solutions made possible by the Lumicks C-trap microfluidic chamber. Using fluorescence to check for assembly the force-dependence of the system can then be investigated. By applying these forces in vitro we learn the properties of the system and how it would respond in its native environment in the cell, where it is not presently possible to perform such measurements.Alternatively, we can capture pathogenic yeast cells and measure their adhesion to materials on the flow chamber surface, and their response to drugs affecting adhesion can be directly measured. The uses of this system are vast and in this proposal we present seven projects with a diverse spectrum of applications.The system we are proposing to install possesses multiple combined functionalities, microfluidics, optical trapping, TIRF, widefield fluorescence and interference reflection microscopy (IRM). This latter technology uses the interference of light to detect objects without any label. This means that in some experiments where labelling affects activity, using IRM overcomes this limitation. Indeed, one project in this proposal seeks to use IRM to measure the formation of protein complexes in a membrane coated surface. By combining these capabilities the resulting system is very powerful, and also unique. In the UK there are no systems with this capability, and across the world there are only two. We want to ensure wide access to this technology and therefore we are reserving 25% of instrument time for external use. We will bring investigators to Kent to train on the system and to try out force experiments on their biological systems. The environment at Kent is ideal for the C-trap, the PI is an expert in the use and development of optical trapping technologies and this project also includes a second expert in optical trapping from the University of Nottingham. Also, at the University of Kent we have a diverse range of investigators that will be exposed to the capabilities of this system and therefore we will achieve more rapid diversification of application, which in turn will bring more investigators to Kent to use the C-trap. Finally, this system is not an add-on to an existing system, nor is it an incremental advance in our capabilities. The C-trap offers a genuine step change in the capabilities of researchers across the UK, and this is the right time and right group of investigators to support such an instrument.
生物系统受到许多外部因素的影响,如温度、渗透压和力。后者发生在多个尺寸尺度上,DNA修复蛋白会与其他与DNA结合的蛋白质发生碰撞,迁移到感染部位的免疫细胞必须推动障碍物,肌肉收缩对抗负荷。这些都是力对生物系统影响的例子。目前,我们对这些进程缺乏明确的了解,因为没有足够的手段来研究武力的影响。在这项提案中,我们的目标是填补这一空白,安装在肯特大学称为Lumicks C-陷阱的光学捕获系统。光学捕获(也称为激光镊子),其发现者去年获得了诺贝尔奖,是一种允许珠子或其他物体,包括囊泡,细胞或细胞器被聚焦光束捕获的技术。这种类似于“牵引光束”的技术使研究人员能够物理操纵感兴趣的生物系统。这种分析的架构可以包括将单个DNA分子悬浮在两个珠子之间,然后通过将DNA浸入Lumicks C-trap微流体室所能实现的不同溶液中来在DNA上组装蛋白质复合物。使用荧光来检查组装,然后可以研究系统的力依赖性。通过在体外施加这些力,我们可以了解系统的特性,以及它在细胞中的天然环境中如何反应,目前还不可能进行这样的测量。或者,我们可以捕获致病酵母细胞并测量它们对流动室表面材料的粘附,并且可以直接测量它们对影响粘附的药物的反应。该系统的用途是广泛的,在这个建议中,我们提出了七个项目与不同的应用范围。我们建议安装的系统具有多种组合功能,微流体,光学捕获,TIRF,宽场荧光和干涉反射显微镜(CTEM)。后一种技术利用光的干涉来检测没有任何标签的物体。这意味着,在一些实验中,标记影响活动,使用ESTA克服了这一限制。事实上,该提案中的一个项目试图使用荧光素来测量膜涂层表面中蛋白质复合物的形成。通过结合这些功能,所产生的系统非常强大,也是独一无二的。在英国,没有具有这种能力的系统,而在世界各地,只有两个。我们希望确保广泛使用这项技术,因此我们保留25%的仪器时间供外部使用。我们将把调查人员带到肯特,对这个系统进行培训,并在他们的生物系统上进行强制实验。在肯特的环境是理想的C-陷阱,PI是一个专家在使用和发展的光学捕获技术,这个项目还包括第二个专家在光学捕获从诺丁汉大学。此外,在肯特大学,我们有各种各样的调查人员,他们将接触到这个系统的能力,因此我们将实现更快的应用多样化,这反过来又将使更多的调查人员到肯特使用C-陷阱。最后,这个系统不是现有系统的附加物,也不是我们能力的渐进式进步。C-trap为英国各地的研究人员的能力提供了一个真正的步骤变化,这是支持这种工具的正确时间和正确的研究人员群体。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identification of the target and mode of action for the prokaryotic nucleotide excision repair inhibitor ATBC.
- DOI:10.1042/bsr20220403
- 发表时间:2022-06-30
- 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Single-molecule analysis of DNA-binding proteins from nuclear extracts (SMADNE).
- DOI:10.1093/nar/gkad095
- 发表时间:2023-04-24
- 期刊:
- 影响因子:14.9
- 作者:
- 通讯作者:
Combining cancer chemotherapeutics with bacterial DNA repair inhibitors to develop novel antimicrobials
- DOI:10.1101/2023.03.17.532951
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:L. Bernacchia;Arya Gupta;A. Paris;Alexandra A. Moores;N. Kad
- 通讯作者:L. Bernacchia;Arya Gupta;A. Paris;Alexandra A. Moores;N. Kad
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neil Kad其他文献
A Branched Kinetic Pathway Facilitates Myosin Va Processivity
- DOI:
10.1016/j.bpj.2008.12.2959 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Chong Zhang;Neil Kad;David M. Warshaw - 通讯作者:
David M. Warshaw
A Novel DNA Repair Mechanism for the Processing of Low-Level UV-Induced Damage in Bacteria
- DOI:
10.1016/j.bpj.2017.11.491 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Luke Springall;Craig Hughes;Michelle Simons;Stavros Azinas;Bennett Van Houten;Neil Kad - 通讯作者:
Neil Kad
Neil Kad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neil Kad', 18)}}的其他基金
Understanding dual filament regulation in muscle using single molecule imaging in vitro and in myofibrils
使用体外单分子成像和肌原纤维了解肌肉中的双丝调节
- 批准号:
BB/Y001621/1 - 财政年份:2024
- 资助金额:
$ 96.76万 - 项目类别:
Research Grant
A Generalised Approach to Derive Functionally Active Peptide Inhibitors of Transcription Factor Activity
衍生转录因子活性的功能活性肽抑制剂的通用方法
- 批准号:
BB/R017921/1 - 财政年份:2018
- 资助金额:
$ 96.76万 - 项目类别:
Research Grant
Reconstitution of nucleotide excision repair at the single molecule level in vitro and in vivo
体外和体内单分子水平的核苷酸切除修复重建
- 批准号:
BB/P00847X/1 - 财政年份:2017
- 资助金额:
$ 96.76万 - 项目类别:
Research Grant
Developing and validating a new tool for simultaneous multi-channel wide-field imaging
开发并验证同步多通道宽视场成像的新工具
- 批准号:
BB/M019144/1 - 财政年份:2015
- 资助金额:
$ 96.76万 - 项目类别:
Research Grant
Developing a novel single molecule imaging technology for application across disciplines
开发一种跨学科应用的新型单分子成像技术
- 批准号:
BB/M01343X/1 - 财政年份:2014
- 资助金额:
$ 96.76万 - 项目类别:
Research Grant
A real-time single molecule approach to understand how DNA repair proteins locate and remove damage
实时单分子方法了解 DNA 修复蛋白如何定位和消除损伤
- 批准号:
BB/I003460/1 - 财政年份:2011
- 资助金额:
$ 96.76万 - 项目类别:
Research Grant
相似国自然基金
无线网络中多用户合作分集技术研究
- 批准号:60472079
- 批准年份:2004
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
- 批准号:
10839518 - 财政年份:2023
- 资助金额:
$ 96.76万 - 项目类别:
Track 2: Customized Multi-tier Assistance, Training, and Computational Help (MATCH) for End User ACCESS to CI
轨道 2:为最终用户访问 CI 提供定制的多层协助、培训和计算帮助 (MATCH)
- 批准号:
2138286 - 财政年份:2022
- 资助金额:
$ 96.76万 - 项目类别:
Cooperative Agreement
Arithmix: A no-code multi-dimensional data aggregation tool utilising novel user access controls to permit secure, collaborative, cross organisational analytics
Arithmix:一种无代码多维数据聚合工具,利用新颖的用户访问控制来允许安全、协作、跨组织分析
- 批准号:
10034178 - 财政年份:2022
- 资助金额:
$ 96.76万 - 项目类别:
Collaborative R&D
ENACT: Translating Health Informatics Tools to Research and Clinical Decision Making
ENACT:将健康信息学工具转化为研究和临床决策
- 批准号:
10673622 - 财政年份:2022
- 资助金额:
$ 96.76万 - 项目类别:
ENACT: Translating Health Informatics Tools to Research and Clinical Decision Making
ENACT:将健康信息学工具转化为研究和临床决策
- 批准号:
10435620 - 财政年份:2022
- 资助金额:
$ 96.76万 - 项目类别:
Enhance UCSC Xena: extend interactive visualization to ultra-large-scale multi-omics data and integrate with analysis resources
增强 UCSC Xena:将交互式可视化扩展到超大规模多组学数据并与分析资源集成
- 批准号:
10687189 - 财政年份:2021
- 资助金额:
$ 96.76万 - 项目类别:
Accelerating Health Information Resource Equity for Multiracial Populations
加速多种族人群的健康信息资源公平
- 批准号:
10454428 - 财政年份:2021
- 资助金额:
$ 96.76万 - 项目类别:
Accelerating Health Information Resource Equity for Multiracial Populations
加速多种族人群的健康信息资源公平
- 批准号:
10686026 - 财政年份:2021
- 资助金额:
$ 96.76万 - 项目类别:
Distributed Multi-User MIMO and Resource Allocation for Multi Access Point Wi-Fi Systems
多接入点 Wi-Fi 系统的分布式多用户 MIMO 和资源分配
- 批准号:
2599357 - 财政年份:2021
- 资助金额:
$ 96.76万 - 项目类别:
Studentship
Overture: A Multi-Scale Data Platform for Cancer Genomics Research
Overture:癌症基因组学研究的多尺度数据平台
- 批准号:
10305416 - 财政年份:2021
- 资助金额:
$ 96.76万 - 项目类别:














{{item.name}}会员




