Signalling In Space And Time: Intracellular Cyclic AMP Dynamics In Human Vascular Smooth Muscle

空间和时间信号传导:人血管平滑肌细胞内环 AMP 动力学

基本信息

  • 批准号:
    BB/V002767/1
  • 负责人:
  • 金额:
    $ 56.9万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Blood vessels constantly change their diameter to match blood flow to tissue needs for oxygen. These adjustments are made by the contraction and relaxation of muscle cells within blood vessel walls. This makes understanding the mechanisms that control muscle contractility important for understanding normal blood flow around the body and how this changes during exercise, with age or in diseases like diabetes or high blood pressure. When a tissue becomes starved of oxygen and needs more blood it sends 'relaxation' signals to the arterial muscle cells. These signals are relayed from the cell surface to the cell interior by a small diffusible messenger molecule called cyclic AMP which functions to distribute the message to multiple sites within the cell to induce relaxation. A fundamental question is how a highly diffusive messenger that can move freely in the cell manages to deliver information to the correct intracellular 'address'?One way to solve the problem would be if cyclic AMP moved about within vascular muscle cells in complex 'waves' that co-ordinated the correct arrival of the relaxation signal at different cellular targets. These patterns can be generated by enzymes called phosphodiesterases (PDEs) that degrade cyclic AMP and restrict its free movement in the cell. Barriers of PDEs, like flood defences, could channel cyclic AMP towards its intended destination ensuring the message reaches the correct intracellular targets in the correct order. Arterial cells possess many different types of PDE enzyme that should allow them to generate these complex cyclic AMP dispersal patterns, but little is known about this in vascular smooth cells. This is a major gap in our understanding of blood vessel physiology and of particular interest to the pharmaceutical industry since genetic differences in the activity of PDEs (and also the enzymes that produce cyclic AMP) are linked to susceptibility to high blood pressure and stroke. Drugs that target PDEs could be useful in a number of diseases, but their usage is currently restricted due to serious side-effects because of our limited knowledge about how these enzymes work in normal cells.In this project we will use state-of-the-art molecular sensors anchored at specific points within human arterial cells to track the real-time flow of cyclic AMP around the cell. Differences in the timing of activation of these sensors will allow us to determine where the cyclic AMP 'wave' is at any one time within the cell. We can also use drugs that selectively inhibit different types of PDE to tell us which of these enzymes is important in channelling the cyclic AMP signal. We believe that different cell-surface signals from different hormones and neurotransmitters generate distinct patterns of cyclic AMP dispersal and that the maintenance of these patterns is crucial to normal blood vessel relaxation. We will carry out experiments in human cells from two different arteries, the coronary artery and the pulmonary artery. These arteries carry out very different physiological roles: the coronary artery feeds the heart muscle with oxygenated blood, while the pulmonary artery carries deoxygenated blood from the heart to the lungs to pick up more oxygen. It is important that we identify any potential differences in how PDEs work between different arteries as this will direct future research aimed at identifying drugs that can dilate one artery while leaving other unaffected, thus reducing the side effects of therapies aimed at modulating blood flow in the body. The overall outcome of this project will be to: 1) identify the molecular mechanisms that ensure that our arteries dilate to optimise the flow of blood and oxygen around the body; 2) explain how genetic variation in cyclic AMP signalling protein activity can result in differences in blood flow and blood pressure, and 3) ultimately help in the development of future therapies that target the cyclic AMP signalling axis.
血管不断地改变其直径,以使血流与组织对氧气的需求相匹配。这些调整是通过血管壁内肌肉细胞的收缩和舒张来完成的。这使得了解控制肌肉收缩的机制对于了解身体周围的正常血液流动以及在运动过程中如何变化,随着年龄的增长或糖尿病或高血压等疾病非常重要。当一个组织缺氧需要更多的血液时,它会向动脉肌肉细胞发出“放松”信号。这些信号通过称为环AMP的小的可扩散信使分子从细胞表面传递到细胞内部,环AMP的功能是将信息分配到细胞内的多个位点以诱导松弛。一个基本的问题是,一个可以在细胞中自由移动的高度扩散的信使如何设法将信息传递到正确的细胞内“地址”?解决这个问题的一种方法是,如果环AMP在血管肌肉细胞内以复杂的“波”运动,协调松弛信号正确到达不同的细胞靶点。这些模式可以由称为磷酸二酯酶(PDE)的酶产生,该酶降解环AMP并限制其在细胞中的自由运动。PDE的屏障,如洪水防御,可以将环AMP导向其预期目的地,确保消息以正确的顺序到达正确的细胞内目标。动脉细胞具有许多不同类型的PDE酶,这应该使它们能够产生这些复杂的环AMP分散模式,但在血管平滑肌细胞中对此知之甚少。这是我们对血管生理学的理解中的一个主要空白,并且对制药行业特别感兴趣,因为PDE(以及产生环AMP的酶)活性的遗传差异与高血压和中风的易感性有关。靶向PDE的药物可能对许多疾病有用,但由于我们对这些酶在正常细胞中如何工作的知识有限,它们的使用目前受到严重副作用的限制。在这个项目中,我们将使用最先进的分子传感器锚定在人体动脉细胞内的特定点,以跟踪细胞周围的环AMP的实时流动。这些传感器激活时间的差异将使我们能够确定细胞内任何一个时间的cAMP“波”在哪里。我们还可以使用选择性抑制不同类型PDE的药物来告诉我们这些酶中的哪一种在传导环AMP信号中是重要的。我们认为,不同的细胞表面信号从不同的激素和神经递质产生不同的模式的环磷酸腺苷的分散和维护这些模式是至关重要的正常血管舒张。我们将在两种不同动脉的人体细胞中进行实验,冠状动脉和肺动脉。这些动脉执行非常不同的生理作用:冠状动脉为心肌提供含氧血液,而肺动脉将脱氧血液从心脏运送到肺部以获得更多氧气。重要的是,我们确定PDE在不同动脉之间如何工作的任何潜在差异,因为这将指导未来的研究,旨在确定可以扩张一条动脉而不影响其他动脉的药物,从而减少旨在调节体内血流的治疗的副作用。该项目的总体成果将是:1)确定确保我们的动脉扩张以优化身体周围血液和氧气流动的分子机制; 2)解释环AMP信号传导蛋白活性的遗传变异如何导致血流和血压的差异,以及3)最终帮助开发针对环AMP信号传导轴的未来疗法。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Long QT Syndrome-Associated Mutations D130V and E141K Affect the Structure-Function Relationship of Calmodulin
长 QT 综合征相关突变 D130V 和 E141K 影响钙调蛋白的结构-功能关系
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Wadmore K.
  • 通讯作者:
    Wadmore K.
The Importance of Pore-Forming Toxins in Multiple Organ Injury and Dysfunction.
  • DOI:
    10.3390/biomedicines10123256
  • 发表时间:
    2022-12-14
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Abrams, Simon T. T.;Wang, Lijun;Yong, Jun;Yu, Qian;Du, Min;Alhamdi, Yasir;Cheng, Zhenxing;Dart, Caroline;Lane, Steven;Yu, Weiping;Toh, Cheng-Hock;Wang, Guozheng
  • 通讯作者:
    Wang, Guozheng
Mapping distinct vasodilator-induced phosphorylation patterns in human vascular smooth muscle: A quantitative phosphoproteomic approach
绘制人血管平滑肌中不同的血管舒张剂诱导的磷酸化模式:定量磷酸化蛋白质组学方法
  • DOI:
    10.1152/physiol.2023.38.s1.5732062
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Sloniecka M
  • 通讯作者:
    Sloniecka M
Store-operated calcium channels in skin.
  • DOI:
    10.3389/fphys.2022.1033528
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Caroline Dart其他文献

Selective Activation of Epac Increases the Frequency of Submembrane Calcium Sparks in Mesenteric Smooth Muscle Cells
  • DOI:
    10.1016/j.bpj.2012.11.3404
  • 发表时间:
    2013-01-29
  • 期刊:
  • 影响因子:
  • 作者:
    Owain Llŷr Roberts;Tomoko Kamishima;Richard Barrett-Jolley;John M. Quayle;Caroline Dart
  • 通讯作者:
    Caroline Dart
Long-QT Syndrome-Associated Calmodulin Mutations and Their Interactions at the K<sub>v</sub>7.1 Potassium Channel
  • DOI:
    10.1016/j.bpj.2019.11.2291
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Liam F. McCormick;Nitika Gupta;Lee P. Haynes;Svetlana Antonyuk;Caroline Dart;Nordine Helassa
  • 通讯作者:
    Nordine Helassa
Epac-Mediated Mobilization of Intracellular Calcium in Vascular Myocytes and the Downstream Effects on Arterial K<sub>ATP</sub> Channels
  • DOI:
    10.1016/j.bpj.2009.12.743
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Gregor I. Purves;Tomoko Kamishima;Lowri M. Davies;John M. Quayle;Caroline Dart
  • 通讯作者:
    Caroline Dart
LQTS-Associated Mutants of Calmodulin Show Disrupted Interaction with L-Type Calcium Channels
  • DOI:
    10.1016/j.bpj.2019.11.2296
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Nitika Gupta;Liam F. McCormick;Lee P. Haynes;Caroline Dart;Nordine Helassa
  • 通讯作者:
    Nordine Helassa
Caveolin-1 Inhibits Vascular K<sub>ATP</sub> Channels by Modulating Channel Sensitivity to MgADP
  • DOI:
    10.1016/j.bpj.2009.12.3830
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lowri M. Davies;Gregor I. Purves;Richard Barrett-Jolley;Caroline Dart
  • 通讯作者:
    Caroline Dart

Caroline Dart的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于非对称k-space算子分解的时空域声波和弹性波隐式有限差分新方法研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
联合QISS和SPACE一站式全身NCE-MRA对原发性系统性血管炎的诊断价值的研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
三维流形的L-space猜想和左可序性
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高维space-filling问题及其相关问题
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
难治性焦虑障碍儿童青少年父母基于SPACE 应对技能训练团体干预疗效
  • 批准号:
    20Y11906700
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Rigged Hilbert Space与Bethe-Salpeter方程框架下强子共振态的理论研究
  • 批准号:
    11975075
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
Space-surface Multi-GNSS机会信号感知植生参数建模与融合方法研究
  • 批准号:
    41974039
  • 批准年份:
    2019
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
基于无线光载射频(Radio over Free Space Optics)技术的分布式天线系统关键技术研究
  • 批准号:
    60902038
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
SPACE-RIP并行磁共振成像算法及其临床应用的研究
  • 批准号:
    30670578
  • 批准年份:
    2006
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Postdoctoral Fellowship: EAR-PF: Taxon-Specific Cross-Scale Responses to Aridity Gradients through Time and across Space in the NW Great Basin of the United States
博士后奖学金:EAR-PF:美国西北部大盆地随时间和空间的干旱梯度的分类单元特异性跨尺度响应
  • 批准号:
    2305325
  • 财政年份:
    2024
  • 资助金额:
    $ 56.9万
  • 项目类别:
    Fellowship Award
EAGER: Fertilizing the Tree of Life with novel taxa from deep-sea vent microbial metagenomes collected over time and space
EAGER:用随时间和空间收集的深海喷口微生物宏基因组中的新类群为生命之树施肥
  • 批准号:
    2409507
  • 财政年份:
    2024
  • 资助金额:
    $ 56.9万
  • 项目类别:
    Standard Grant
Australian Participation in the Legacy Survey of Space and Time
澳大利亚参与遗产时空勘测
  • 批准号:
    LE220100007
  • 财政年份:
    2024
  • 资助金额:
    $ 56.9万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Conference: 2024 Microbial Stress Response GRC and GRS: Dealing with the Unknown: Bacterial Stress Responses Across Time and Space
会议:2024年微生物应激反应GRC和GRS:应对未知:跨时间和空间的细菌应激反应
  • 批准号:
    2420525
  • 财政年份:
    2024
  • 资助金额:
    $ 56.9万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: OCE-PRF: Do dead shells make good homes? Assessing the Development, Stability, and Evolution of Shell Gravel Habitats Across Space and Time
博士后奖学金:OCE-PRF:死去的贝壳能成为美好的家园吗?
  • 批准号:
    2307502
  • 财政年份:
    2024
  • 资助金额:
    $ 56.9万
  • 项目类别:
    Standard Grant
Resilient free-space optical precise positioning and time synchronisation
弹性自由空间光学精确定位和时间同步
  • 批准号:
    IM240100196
  • 财政年份:
    2024
  • 资助金额:
    $ 56.9万
  • 项目类别:
    Mid-Career Industry Fellowships
Mapping the integration of T cell fate control across time and space
绘制 T 细胞命运控制跨时间和空间的整合图
  • 批准号:
    DP240101851
  • 财政年份:
    2024
  • 资助金额:
    $ 56.9万
  • 项目类别:
    Discovery Projects
Time- and space-super-resolution holographic microscope for label-free tissue dyanmics imaging
用于无标记组织动力学成像的时间和空间超分辨率全息显微镜
  • 批准号:
    23KF0186
  • 财政年份:
    2023
  • 资助金额:
    $ 56.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The space-time organization of sleep oscillations as potential biomarker for hypersomnolence
睡眠振荡的时空组织作为嗜睡的潜在生物标志物
  • 批准号:
    10731224
  • 财政年份:
    2023
  • 资助金额:
    $ 56.9万
  • 项目类别:
Predictive modeling of mammalian cell fate transitions over time and space with single-cell genomics
利用单细胞基因组学预测哺乳动物细胞命运随时间和空间转变的模型
  • 批准号:
    10572855
  • 财政年份:
    2023
  • 资助金额:
    $ 56.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了