A novel eukaryotic RNA thermoswitch: molecular function and biotech applications
一种新型真核RNA热开关:分子功能和生物技术应用
基本信息
- 批准号:BB/V006096/1
- 负责人:
- 金额:$ 94.19万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Responsiveness to environmental stresses, including temperature, is a crucial feature for sessile organisms such as plants so they can adjust their growth and development accordingly. We have recently discovered a novel plant RNA ThermoSwitch (pRTS) that is responsible for day-time rhythmic growth of the model flowering plant Arabidopsis (Chung* et al, May 2020, Nature Plants, with accompanying News and Views highlight). In contrast to more established protein-based thermo-sensors, the pRTS is an RNA element, which directly regulates protein synthesis through rapid conformation changes in response to temperature fluctuations. Through a combination of computation and experimental assays, we have demonstrated that the pRTS drives the protein synthesis of several transcription factors such PIF7, WRKY22 and HSFA2, that control the expression of many proteins, within minutes after the temperature changes from 17C to 27C. Further investigation on the role of PIF7 revealed that it drives transcription for several growth regulators, resulting in day-time growth of Arabidopsis.However, this previous work just scratched the surface of understanding the biological function of pRTS. Many very important questions remained unanswered, especially as to how pRTSs manipulate translation dynamics to achieved enhanced protein synthesis within such a short timeframe. Further, the newly discovered pRTSs have great biotechnological potential as energy-efficient rapid-inducers for heterologous protein expression for molecular pharming - an appealing system for high throughput production in response to immediate needs such as vaccine production during outbreaks and pandemics. We will address these two questions through the following objectives: 1. We will decipher pRTS-mediated translation dynamics. This information will further our understanding of inherent differences between the plant and animal translation machinery and will provide a molecular explanation for the more thermo-responsive nature of plants. 1a. We will determine whether pRTSs are phylogenetically conserved within the plant kingdom.1b. We will dissect the molecular dynamics of pRTS-dependent translation by mapping all translation complexes (scanning, initiating, elongating and terminating complexes) before and after pRTS activation.2. We will develop an energy-efficient thermo-inducible high-level expression system for molecular pharming.2a. We will identify optimal features of pRTSs for rapid thermo-induced protein synthesis2b. We will develop a thermo-inducible high-yield heterologous gene expression system that can be utilised by the biopharma industry2c. Proof of concept strategy: To confirm efficiency, yield and efficacy in planta with the system developed in 2b.This research is exciting for several reasons. The discovery of plant ThermoSwitches opens up a whole new avenue for adaptive response to temperature changes in plants at the level of protein synthesis. We are ideally poised to exploit this new research direction. Understanding the translation dynamics driven by the plant ThermoSwitch may also help explain why translation machinery in the animal kingdom is less responsive to temperature change. Importantly, biotechnological utilisation of pRTSs could provide an ideal system for rapid vaccine production in an economical manner when demand is urgent.
对包括温度在内的环境压力的反应是植物等固着生物的一个重要特征,因此它们可以相应地调整其生长和发育。我们最近发现了一种新的植物RNA ThermoSwitch(pRTS),它负责模式开花植物拟南芥的日间节律生长(Chung* et al,May 2020,Nature Plants,with accompanying News and Views highlight)。与更成熟的基于蛋白质的热传感器相比,pRTS是RNA元件,其通过响应于温度波动的快速构象变化直接调节蛋白质合成。通过计算和实验测定的组合,我们已经证明了pRTS驱动几种转录因子如PIF 7、WRKY 22和HSFA 2的蛋白质合成,这些转录因子在温度从17 ℃变化到27 ℃后的几分钟内控制许多蛋白质的表达。对PIF 7作用的进一步研究表明,PIF 7可驱动多种生长调节因子的转录,从而导致拟南芥的日间生长。许多非常重要的问题仍然没有得到解答,特别是关于pRTSs如何操纵翻译动力学以在如此短的时间内实现增强的蛋白质合成。此外,新发现的pRTSs具有巨大的生物技术潜力,作为能量高效的快速诱导剂,用于异源蛋白质表达,用于分子嫁接-一种有吸引力的系统,用于高通量生产,以响应诸如爆发和流行期间的疫苗生产的迫切需要。我们将通过以下目标来解决这两个问题:1.我们将破译pRTS介导的翻译动力学。这些信息将进一步加深我们对植物和动物翻译机制之间固有差异的理解,并将为植物更具热响应性的性质提供分子解释。1a.我们将确定pRTSs是否在植物界中是遗传上保守的。我们将通过绘制pRTS激活前后的所有翻译复合物(扫描、起始、延伸和终止复合物)来剖析pRTS依赖性翻译的分子动力学。我们将开发一个节能的热诱导高水平表达系统的分子药物。我们将确定快速热诱导蛋白质合成的pRTS的最佳特征2b。我们将开发一种可用于生物制药行业的热诱导高产异源基因表达系统2c。概念验证策略:用2b中开发的系统在植物中确认效率、产量和功效。这项研究令人兴奋的原因有几个。植物温控开关的发现为植物在蛋白质合成水平上对温度变化的适应性反应开辟了一条全新的途径。我们已经做好了充分准备来开拓这一新的研究方向。理解植物热开关驱动的翻译动力学也可能有助于解释为什么动物王国的翻译机制对温度变化的反应较小。重要的是,pRTSs的生物技术利用可以在需求迫切时以经济的方式提供用于快速疫苗生产的理想系统。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pervasive translational control of photosynthesis genes during photomorphogenesis is acquired by C 4 genes
光形态发生过程中光合作用基因的普遍翻译控制是由 C 4 基因获得的
- DOI:10.1101/2023.10.27.563924
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Reyna-Llorens I
- 通讯作者:Reyna-Llorens I
The distinct translational landscapes of gram-negative Salmonella and gram-positive Listeria.
- DOI:10.1038/s41467-023-43759-1
- 发表时间:2023-12-09
- 期刊:
- 影响因子:16.6
- 作者:Bryant, Owain J.;Lastovka, Filip;Powell, Jessica;Chung, Betty Y. -W.
- 通讯作者:Chung, Betty Y. -W.
The distinct translational landscapes of Gram-positive and Gram-negative bacteria
革兰氏阳性菌和革兰氏阴性菌的独特翻译景观
- DOI:10.1101/2023.05.25.542305
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Bryant O
- 通讯作者:Bryant O
RNA structure mediated thermoregulation: What can we learn from plants?
RNA结构介导的温度调节:我们可以从植物中学到什么?
- DOI:10.17863/cam.88256
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Thomas S
- 通讯作者:Thomas S
Monitoring Real-time Temperature Dynamics of a Short RNA Hairpin Using Förster Resonance Energy Transfer and Circular Dichroism.
使用福斯特共振能量转移和圆二色性监测短 RNA 发夹的实时温度动态。
- DOI:10.21769/bioprotoc.3950
- 发表时间:2021
- 期刊:
- 影响因子:0.8
- 作者:Balcerowicz M
- 通讯作者:Balcerowicz M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Betty Chung其他文献
Control de los contaminantes químicos en el Perú.
控制秘鲁的污染物。
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Betty Chung - 通讯作者:
Betty Chung
Spatial proteomics identifies a CRTC-dependent viral signaling pathway that stimulates production of interleukin-11
空间蛋白质组学鉴定出一种依赖 CRTC 的病毒信号通路,该通路可刺激白细胞介素-11 的产生。
- DOI:
10.1016/j.celrep.2025.115263 - 发表时间:
2025-02-25 - 期刊:
- 影响因子:6.900
- 作者:
Benjamin J. Ravenhill;Marisa Oliveira;George Wood;Ying Di;Joanne Kite;Xinyue Wang;Colin T.R. Davies;Yongxu Lu;Robin Antrobus;Gill Elliott;Nerea Irigoyen;David J. Hughes;Paul A. Lyons;Betty Chung;Georg H.H. Borner;Michael P. Weekes - 通讯作者:
Michael P. Weekes
Abstract #815: A Case of Parathyroid Cancer with Mutations NF1 and Pten Coexisting with Renal Cell Carcinoma: A Very Rare Occurrence
- DOI:
10.1016/s1530-891x(20)45149-3 - 发表时间:
2016-05-01 - 期刊:
- 影响因子:
- 作者:
Garima Thapar;Betty Chung;Stanley Trooskin;Xiangbing Wang - 通讯作者:
Xiangbing Wang
Betty Chung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Betty Chung', 18)}}的其他基金
Rapid translational responses as a novel mechanism to repair cellular damage caused by the bacterial injectisome in animal and plant host cells
快速翻译反应作为修复动物和植物宿主细胞中细菌注射体引起的细胞损伤的新机制
- 批准号:
BB/X001261/1 - 财政年份:2023
- 资助金额:
$ 94.19万 - 项目类别:
Research Grant
Development of a virus-free sensor system to repurpose approved drugs for blocking Coronavirus replication
开发无病毒传感器系统,以重新利用已批准的药物来阻止冠状病毒复制
- 批准号:
BB/V017780/1 - 财政年份:2021
- 资助金额:
$ 94.19万 - 项目类别:
Research Grant
Control of pathogen gene expression during symbiotic maintenance.
共生维持过程中病原体基因表达的控制。
- 批准号:
MR/R021821/1 - 财政年份:2018
- 资助金额:
$ 94.19万 - 项目类别:
Fellowship
相似国自然基金
白质消融性白质脑病中胶质细胞选择性受累的机制研究
- 批准号:30872793
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
白质消融性白质脑病致病基因EIF2B5的突变功能研究
- 批准号:30772355
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Mechanistic analysis of TDP-43-mediated RNA localization in neurons and its misregulation in ALS
TDP-43介导的神经元RNA定位及其在ALS中的错误调节的机制分析
- 批准号:
10659532 - 财政年份:2023
- 资助金额:
$ 94.19万 - 项目类别:
Studies on RNA polymerase III-related leukodystrophy
RNA聚合酶III相关脑白质营养不良的研究
- 批准号:
10735229 - 财政年份:2023
- 资助金额:
$ 94.19万 - 项目类别:
Mechanisms of RNA Polymerase II transcription
RNA 聚合酶 II 转录机制
- 批准号:
10541908 - 财政年份:2022
- 资助金额:
$ 94.19万 - 项目类别:
Mechanisms of RNA Polymerase II transcription
RNA 聚合酶 II 转录机制
- 批准号:
10581210 - 财政年份:2022
- 资助金额:
$ 94.19万 - 项目类别:
Understanding and Manipulating the Degradation of the C9orf72 Repeat Expansion RNA
了解和操纵 C9orf72 重复扩增 RNA 的降解
- 批准号:
10387697 - 财政年份:2022
- 资助金额:
$ 94.19万 - 项目类别:
Mechanisms of RNA Polymerase II transcription
RNA 聚合酶 II 转录机制
- 批准号:
10330671 - 财政年份:2022
- 资助金额:
$ 94.19万 - 项目类别:
Understanding and Manipulating the Degradation of the C9orf72 Repeat Expansion RNA
了解和操纵 C9orf72 重复扩增 RNA 的降解
- 批准号:
10578669 - 财政年份:2022
- 资助金额:
$ 94.19万 - 项目类别:
UNDERSTANDING THE ROLES OF RNA POLYMERASE I IN TRANSCRIPTION AND BEYOND
了解 RNA 聚合酶 I 在转录及其他方面的作用
- 批准号:
10402822 - 财政年份:2021
- 资助金额:
$ 94.19万 - 项目类别:
UNDERSTANDING THE ROLES OF RNA POLYMERASE I IN TRANSCRIPTION AND BEYOND
了解 RNA 聚合酶 I 在转录及其他方面的作用
- 批准号:
10159609 - 财政年份:2021
- 资助金额:
$ 94.19万 - 项目类别:
AI/ML Ready appraoches for integrative RNA processing, splicing and spatial genomics
用于整合 RNA 处理、剪接和空间基因组学的 AI/ML Ready 方法
- 批准号:
10407768 - 财政年份:2021
- 资助金额:
$ 94.19万 - 项目类别: