Understanding molecular accumulation in single cells via microfluidics and omics

通过微流控和组学了解单细胞中的分子积累

基本信息

  • 批准号:
    BB/V008021/1
  • 负责人:
  • 金额:
    $ 65.26万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

All living organisms exchange molecules with the environment. Organisms strive to take up molecules essential for subsistence such as sugars, amino acids and ions while simultaneously attempting to exclude poisonous molecules such as toxic waste and drugs. To achieve this aim, the cells constituting an organism are surrounded by membranes that act as physical barriers for unwanted molecules allowing for a controlled molecular exchange. These membranes are made up of lipids that are spanned by proteins that form several different physical pathways for molecular transport across the membrane. Understanding how these pathways help some cells to reduce the amount of toxic compounds they take up from the environment is a fundamental question in biology. In fact, there are important differences between cells even with the same genetic make-up. For example, in a population of Escherichia coli, commonly found in our intestine, some bacteria grow much slower than others. Even more surprisingly, some bacteria within the population are able to survive a quantity of antibiotic drugs that kills the rest of the population. In contrast, little is known about cell-to-cell differences in the ability to take up compounds and how the environment affects such capabilities.This project will fill this crucial gap in our knowledge by determining how can two genetically identical cells accumulate substantially different quantities of a given compound. This knowledge will open the way to the manipulation of the phenotypic structure of a population of genetically identical cells by externally controlling molecular accumulation.To achieve this aim we will develop and use a novel combination of cross-disciplinary approaches drawing on complementary expertise in single cell microbiology (Pagliara), mathematics (Tsaneva-Atanasova) and omics (Jeffries). We will optimise such approaches using gram-negative bacteria, such as Escherichia coli, as model organisms and antibiotics as model transported molecular species. This choice is dictated on one hand by the repertoire of biological, biophysical and modelling tools available for investigating bacteria and the urgent need for improving the efficacy of antibiotic treatment on the other hand.We will use microfluidic devices with hundreds of microscopic chambers each capable to isolate a single bacterium. These devices will allow us to capture and grow hundreds of bacteria; by using microscopy and mathematical approaches we will measure the amount of antibiotic that is taken up by each cell within the population. These measurements therefore will enable studying the cell-to-cell differences in drug uptake within the population and thus identifying individuals that show reduced drug accumulation.We will then analyse the content of RNA and proteins of bacteria that take up only small quantities of antibiotics. This will allow us to determine which mechanisms help these bacteria to exclude antibiotics and thus survive antibiotic treatment. We will then use this information to manipulate the properties of the membrane of these bacteria in order to increase the amount of drugs that enter in each bacterium.These studies will allow us to identify the fundamental diversity in the capability to take up molecules within cells with identical genetic material and to understand which pathways are used by individual bacteria to achieve this diversity. This will benefit our society by providing guidelines for pharmacotherapy. The novel approaches that we will develop will be readily transferable to other bacteria and fungi as well as cancer cells. More broadly, these approaches will open the way to the manipulation of the phenotypic structure of a clonal population by using compounds that selectively target subpopulations performing specific functions. Overall our project will have wide implications in microbiology, microbial ecology, pharmacology and industrial processes.
所有生物都与环境交换分子。生物体努力吸收维持生存所必需的分子,如糖、氨基酸和离子,同时试图排除有毒分子,如有毒废物和药物。为了实现这一目标,构成生物体的细胞被膜包围,膜作为不需要的分子的物理屏障,允许受控的分子交换。这些膜是由脂质组成的,脂质被蛋白质跨越,形成了分子在膜上运输的几种不同的物理途径。了解这些途径如何帮助一些细胞减少它们从环境中吸收的有毒化合物的数量是生物学的一个基本问题。事实上,即使具有相同的基因构成,细胞之间也存在重要的差异。例如,在大肠杆菌中,通常在我们的肠道中发现,一些细菌比其他细菌生长得慢得多。更令人惊讶的是,种群中的一些细菌能够在杀死其他种群的大量抗生素药物中存活下来。相比之下,人们对细胞间吸收化合物能力的差异以及环境如何影响这种能力知之甚少。该项目将通过确定两个基因相同的细胞如何积累大量不同数量的给定化合物来填补我们知识中的这一关键空白。这一知识将为通过外部控制分子积累来操纵遗传相同细胞群体的表型结构开辟道路。为了实现这一目标,我们将开发和使用一种新的跨学科方法组合,利用单细胞微生物学(Pagliara)、数学(Tsaneva-Atanasova)和组学(Jeffries)的互补专业知识。我们将利用革兰氏阴性菌(如大肠杆菌)作为模式生物和抗生素作为模式运输分子物种来优化这些方法。这一选择一方面取决于可用于研究细菌的生物、生物物理和建模工具,另一方面取决于提高抗生素治疗效果的迫切需要。我们将使用带有数百个微室的微流控装置,每个微室都能分离出一种细菌。这些设备将使我们能够捕获和培养数百种细菌;通过使用显微镜和数学方法,我们将测量人群中每个细胞所吸收的抗生素量。因此,这些测量将有助于研究人群中药物摄取的细胞间差异,从而识别出药物积累减少的个体。然后,我们将分析只吸收少量抗生素的细菌的RNA和蛋白质含量。这将使我们能够确定哪些机制帮助这些细菌排斥抗生素,从而在抗生素治疗中存活下来。然后,我们将利用这些信息来操纵这些细菌膜的特性,以增加进入每个细菌的药物量。这些研究将使我们能够确定具有相同遗传物质的细胞内分子吸收能力的基本多样性,并了解单个细菌使用哪些途径来实现这种多样性。这将为我们的社会提供药物治疗的指导方针。我们将开发的新方法将很容易转移到其他细菌和真菌以及癌细胞上。更广泛地说,这些方法将为通过使用选择性靶向执行特定功能的亚群的化合物来操纵克隆群体的表型结构开辟道路。总的来说,我们的项目将在微生物学、微生物生态学、药理学和工业过程中有广泛的影响。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Slow growing bacteria survive bacteriophage in isolation.
  • DOI:
    10.1038/s43705-023-00299-5
  • 发表时间:
    2023-09-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Attrill, Erin L;Lapinska, Urszula;Westra, Edze R;Harding, Sarah V;Pagliara, Stefano
  • 通讯作者:
    Pagliara, Stefano
CryoEM structure of the outer membrane secretin channel pIV from the f1 filamentous bacteriophage.
  • DOI:
    10.1038/s41467-021-26610-3
  • 发表时间:
    2021-11-02
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Conners R;McLaren M;Łapińska U;Sanders K;Stone MRL;Blaskovich MAT;Pagliara S;Daum B;Rakonjac J;Gold VAM
  • 通讯作者:
    Gold VAM
Nutrient and salt depletion synergistically boosts glucose metabolism in individual Escherichia coli cells.
  • DOI:
    10.1038/s42003-022-03336-6
  • 发表时间:
    2022-04-20
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
  • 通讯作者:
Fast bacterial growth reduces antibiotic accumulation and efficacy.
  • DOI:
    10.7554/elife.74062
  • 发表时间:
    2022-06-07
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Lapinska, Urszula;Voliotis, Margaritis;Lee, Ka Kiu;Campey, Adrian;Stone, M. Rhia L.;Tuck, Brandon;Phetsang, Wanida;Zhang, Bing;Tsaneva-Atanasova, Krasimira;Blaskovich, Mark A. T.;Pagliara, Stefano
  • 通讯作者:
    Pagliara, Stefano
An ultrasensitive microfluidic approach reveals correlations between the physico-chemical and biological activity of experimental peptide antibiotics.
一种超敏感的微流体方法揭示了实验肽抗生素的物理化学和生物学活性之间的相关性。
  • DOI:
    10.1038/s41598-022-07973-z
  • 发表时间:
    2022-03-07
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Cama J;Al Nahas K;Fletcher M;Hammond K;Ryadnov MG;Keyser UF;Pagliara S
  • 通讯作者:
    Pagliara S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stefano Pagliara其他文献

Antibiotic resistant bacteria survive treatment by doubling while shrinking
具有抗生素抗性的细菌在治疗过程中通过加倍而缩小来存活。
  • DOI:
    10.1128/mbio.02375-24
  • 发表时间:
    2024-11-13
  • 期刊:
  • 影响因子:
    4.700
  • 作者:
    Adrian Campey;Urszula Łapińska;Remy Chait;Krasimira Tsaneva-Atanasova;Stefano Pagliara
  • 通讯作者:
    Stefano Pagliara
Basics of open channel hydraulics, river training and fluvial geomorphology, "Hydrodynamics of River Structures Constructed with Natural Materials, "
明渠水力学、河流整治和河流地貌学基础知识,“天然材料建造的河流结构的流体动力学”
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Michioku (ed. by Artur Radecki-Pawlik;Stefano Pagliara;Jan Hradecky,)
  • 通讯作者:
    Jan Hradecky,)
Open Channel Hydraulics, River Hydraulics Structures and Fluvial Geomorphology
明渠水力学、河流水力学结构和河流地貌
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Michioku (分担執筆);ed. by Artur Radecki-Pawlik;Stefano Pagliara;Jan Hradecky
  • 通讯作者:
    Jan Hradecky
Waterborne Electrospinning of -Lactalbumin Generates Tunable and Biocompatible Nanofibers for Drug Delivery
乳清蛋白的水性静电纺丝产生用于药物输送的可调节且生物相容性纳米纤维
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mai Bay Stie;Michele Corezzi;Adrian D. Juncos Bombin;Fatemeh Ajalloueian;Erin L Attrill;Stefano Pagliara;J. Jacobsen;I. Chronakis;H. M. Nielsen;Vito Foderà
  • 通讯作者:
    Vito Foderà
Plane plunge pool scour with protection structures
  • DOI:
    10.1016/j.jher.2008.06.002
  • 发表时间:
    2008-12-12
  • 期刊:
  • 影响因子:
  • 作者:
    Stefano Pagliara;Michele Palermo
  • 通讯作者:
    Michele Palermo

Stefano Pagliara的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stefano Pagliara', 18)}}的其他基金

DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
  • 批准号:
    EP/Y023528/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.26万
  • 项目类别:
    Research Grant
ERADIAMR
埃拉迪亚
  • 批准号:
    MR/Y033892/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.26万
  • 项目类别:
    Research Grant

相似国自然基金

配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
  • 批准号:
    82371616
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
  • 批准号:
    82370981
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
PET/MR多模态分子影像在阿尔茨海默病炎症机制中的研究
  • 批准号:
    82372073
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
  • 批准号:
    82371652
  • 批准年份:
    2023
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目
靶向PARylation介导的DNA损伤修复途径在恶性肿瘤治疗中的作用与分子机制研究
  • 批准号:
    82373145
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
O6-methyl-dGTP抑制胶质母细胞瘤的作用及分子机制研究
  • 批准号:
    82304565
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
OBSL1功能缺失导致多指(趾)畸形的分子机制及其临床诊断价值
  • 批准号:
    82372328
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Irisin通过整合素调控黄河鲤肌纤维发育的分子机制研究
  • 批准号:
    32303019
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
转录因子LEF1低表达抑制HMGB1致子宫腺肌病患者子宫内膜容受性低下的分子机制
  • 批准号:
    82371704
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
上皮细胞黏着结构半桥粒在热激保护中的作用机制研究
  • 批准号:
    31900545
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Towards the understanding of how chaperones function and prevent amyloidogenic diseases
了解伴侣如何发挥作用并预防淀粉样蛋白形成疾病
  • 批准号:
    10734397
  • 财政年份:
    2023
  • 资助金额:
    $ 65.26万
  • 项目类别:
Understanding the degeneration of axon and nerve terminals in Alzheimer's disease and related dementia brain
了解阿尔茨海默病和相关痴呆大脑中轴突和神经末梢的变性
  • 批准号:
    10661457
  • 财政年份:
    2023
  • 资助金额:
    $ 65.26万
  • 项目类别:
Identifying and understanding the role of repeat RNAs and RAN proteins in Alzheimer's disease
识别和理解重复 RNA 和 RAN 蛋白在阿尔茨海默病中的作用
  • 批准号:
    10833734
  • 财政年份:
    2023
  • 资助金额:
    $ 65.26万
  • 项目类别:
Understanding metabolic changes associated with chronic manganese exposure and Alzheimer's Disease
了解与慢性锰暴露和阿尔茨海默病相关的代谢变化
  • 批准号:
    10353617
  • 财政年份:
    2022
  • 资助金额:
    $ 65.26万
  • 项目类别:
Understanding the functional impacts of Aβ variants in Alzheimer's disease with human brain organoids
了解 Aβ 变异对阿尔茨海默病与人脑类器官的功能影响
  • 批准号:
    10523682
  • 财政年份:
    2022
  • 资助金额:
    $ 65.26万
  • 项目类别:
Understanding Roles for Protein Homeostasis Machinery in Aging Brain Vasculature
了解蛋白质稳态机制在衰老脑血管中的作用
  • 批准号:
    10730184
  • 财政年份:
    2022
  • 资助金额:
    $ 65.26万
  • 项目类别:
Identifying and understanding the role of repeat RNAs and RAN proteins in Alzheimer's disease
识别和理解重复 RNA 和 RAN 蛋白在阿尔茨海默病中的作用
  • 批准号:
    10055279
  • 财政年份:
    2020
  • 资助金额:
    $ 65.26万
  • 项目类别:
Identifying and understanding the role of repeat RNAs and RAN proteins in Alzheimer's disease
识别和理解重复 RNA 和 RAN 蛋白在阿尔茨海默病中的作用
  • 批准号:
    10263228
  • 财政年份:
    2020
  • 资助金额:
    $ 65.26万
  • 项目类别:
A quantitative framework for understanding endosomal trafficking networks in Alzheimer's disease
了解阿尔茨海默氏病内体运输网络的定量框架
  • 批准号:
    10470286
  • 财政年份:
    2018
  • 资助金额:
    $ 65.26万
  • 项目类别:
A quantitative framework for understanding endosomal trafficking networks in Alzheimer's disease
了解阿尔茨海默氏病内体运输网络的定量框架
  • 批准号:
    10241471
  • 财政年份:
    2018
  • 资助金额:
    $ 65.26万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了