Understanding the functional impacts of Aβ variants in Alzheimer's disease with human brain organoids
了解 Aβ 变异对阿尔茨海默病与人脑类器官的功能影响
基本信息
- 批准号:10523682
- 负责人:
- 金额:$ 233.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalATAC-seqAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease brainAlzheimer&aposs disease riskAmericanAmino Acid SequenceAmino AcidsAmyloidAmyloid beta-ProteinAmyloid beta-Protein PrecursorAreaBiochemicalBiological ModelsBrainCell NucleusCell modelCerebrumCharacteristicsChromatinCryoelectron MicroscopyDNA methylation profilingDataDementiaDepositionDiseaseDisease ProgressionEpigenetic ProcessEtiologyEventFoundationsGene ExpressionGenerationsGoalsHumanImmunotherapyIn VitroInfectionInsulinInvestigationIsotopesKineticsLinkMapsMethodsModelingMolecularMolecular ProfilingNatureNerve DegenerationNeurodegenerative DisordersOrganoidsPathogenesisPathogenicityPathologicPatternPeptide HydrolasesPeptidesPersonsPhasePhenotypePolymersPolymorphPopulationPrealbuminProliferatingPropertyProteinsResearch PriorityResistanceResolutionRoleSpecificitySpectroscopy, Fourier Transform InfraredTREM2 geneTherapeuticTherapeutic InterventionTimeTo specifyToxic effectUnited StatesVariantabeta accumulationagedalpha synucleinbrain tissuecell typeexperimental studyfamilial Alzheimer diseasegene regulatory networkgenome-widein vivoinduced pluripotent stem cellinduced pluripotent stem cell technologymembermisfolded proteinmultidisciplinarynonhuman primatepandemic diseaseprion seedsprion-likeprotein aggregationprotein misfoldingreconstructionresponserisk variantsolid state nuclear magnetic resonancestem cell modeltargeted treatmenttau Proteinstranscriptome sequencingtransmission process
项目摘要
While the AD etiology remains largely unknown, with no effective strategy to arrest the relentless progression of
the disease, current evidence connects amyloid-β (Aβ), a 40/42 amino acid peptide, to early disease progression.
How folding of this peptide might create the heterogeneous assemblies (strains) that propagate as a prion-like
infection throughout the brain remains a central question. Accordingly, we propose to connect the mechanisms
of diversification and propagation of proteopathic Aβ strains to their biochemical manifestation to connect the
structural foundation of strain patterns with disease etiology in human brain organoids. Because strains influence
the pathogenic properties of disease etiology and because aggregated Aβ proteins may also govern therapeutic
approaches to the diseases (such as immunotherapy), it is essential to structurally and functionally characterize
what we now understand to be the dynamic nature of proteopathic Aβ propagons. In the current application, we
will combine our complementary areas of expertise to analyze the assembly and propagation of Aβ strains with
their impact in human brain organoids (Z. Wen), spectroscopic analyses of the dynamic assembly network
members (D. Lynn), and with high- and low-resolution cryo-EM reconstructions (B. Liang) to define critical
disease propagons. Our overarching hypothesis is that the multidimensional dynamics of Aβ assemblies define
dynamic kinetic stability underlying the pathobiology of the self-perpetuating amyloid strains of AD. First, we will
identify strain-specific patterns of Aβ intracellular formation and propagation to correlate the molecular
foundations of structural differences among Aβ strains (Aim 1). Second, we will determine the biochemical
manifestation of Aβ strains and elucidate the underlying mechanisms by which aberrant strains function in the
human cortical organoid model (Aim 2). Lastly, we will delineate the molecular signatures associated with Aβ
strains in human cortical organoids (Aim 3). By combining the advanced human induced pluripotent stem cell
technology with comprehensive structural and functional analyses, our investigation will reveal key structural
features underlying the propagation of misfolded protein aggregates in Alzheimer’s disease, allowing us
ultimately to identify early neurodegenerative AD etiology targets for therapeutic intervention.
虽然AD的病因在很大程度上仍不清楚,但没有有效的策略来阻止AD的持续发展
目前的证据表明,这种疾病与早期疾病进展有关,淀粉样蛋白-β(Aβ)是一种40/42氨基酸的多肽。
这种多肽的折叠可能会如何产生异质组装(菌株),这些组装(菌株)会以类Pron的形式传播
整个大脑的感染仍然是一个核心问题。因此,我们建议将这些机制联系起来。
蛋白病型Aβ菌株的分化和繁殖与其生化表现的关系
人脑器官中具有疾病病因学的应变模式的结构基础。因为菌株会影响
疾病病因学的致病特性以及聚集的Aβ蛋白也可能主导治疗
对于疾病的治疗(如免疫治疗),必须从结构和功能上描述
我们现在所理解的是蛋白质病Aβ传播的动态性质。在当前的应用程序中,我们
将结合我们互补的专业知识领域来分析Aβ菌株的组装和繁殖
它们对人脑有机体的影响(Z.wen),动态组装网络的光谱分析
成员(D.Lynn),并使用高分辨率和低分辨率低温EM重建(B.梁)来定义关键
疾病传播者。我们的主要假设是,β组件的多维动力学定义了
阿尔茨海默病自持性淀粉样变的病理生物学基础的动态动力学稳定性。首先,我们将
识别β在细胞内形成和繁殖的菌株特定模式以关联分子
Aβ菌株结构差异的基础(目标1)。第二,我们将测定生化
A-β菌株的临床表现及致病机制探讨
人脑皮质类器官模型(目标2)。最后,我们将描述与β相关的分子签名
人类皮质类器官中的菌株(目标3)。通过结合先进的人类诱导多能干细胞
技术与全面的结构和功能分析,我们的调查将揭示关键的结构
阿尔茨海默病中错误折叠的蛋白质聚集体传播的潜在特征,允许我们
最终确定早期神经退行性AD的病因学靶点进行治疗干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREAS S BOMMARIUS其他文献
ANDREAS S BOMMARIUS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREAS S BOMMARIUS', 18)}}的其他基金
Continuous synthesis, crystallization, and isolation (CSCI) of an API: process model-controlled enzymatic synthesis of beta-lactam antibiotics
API 的连续合成、结晶和分离 (CSCI):过程模型控制的 β-内酰胺抗生素酶促合成
- 批准号:
9750315 - 财政年份:2018
- 资助金额:
$ 233.39万 - 项目类别:
Continuous synthesis, crystallization, and isolation (CSCI) of an API: process model-controlled enzymatic synthesis of beta-lactam antibiotics
API 的连续合成、结晶和分离 (CSCI):过程模型控制的 β-内酰胺抗生素酶促合成
- 批准号:
9982224 - 财政年份:2018
- 资助金额:
$ 233.39万 - 项目类别:
相似国自然基金
基于ATAC-seq与DNA甲基化测序探究染色质可及性对莲两生态型地下茎适应性分化的作用机制
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
利用ATAC-seq联合RNA-seq分析TOP2A介导的HCC肿瘤细胞迁移侵
袭的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向图神经网络ATAC-seq模体识别的最小间隔单细胞聚类研究
- 批准号:62302218
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于ATAC-seq技术研究交叉反应物质197调控TFEB介导的自噬抑制子宫内膜异位症侵袭的分子机制
- 批准号:82001520
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
靶向治疗动态调控肺癌细胞DNA可接近性的ATAC-seq分析
- 批准号:81802809
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
运用ATAC-seq技术分析染色质可接近性对犏牛初级精母细胞基因表达的调控作用
- 批准号:31802046
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
基于ATAC-seq和RNA-seq研究CWIN调控采后番茄果实耐冷性作用机制
- 批准号:31801915
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于ATAC-seq高精度预测染色质相互作用的新方法和基于增强现实的3D基因组数据可视化
- 批准号:31871331
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
Project #2 Integrated single-nucleus multi-omics (ATAC-seq+RNA-seq or chromatin accessibility + RNA-seq) of human TGs
项目
- 批准号:
10806548 - 财政年份:2023
- 资助金额:
$ 233.39万 - 项目类别:
A transposase system for integrative ChIP-exo and ATAC-seq analysis at single-cell resolution
用于单细胞分辨率综合 ChIP-exo 和 ATAC-seq 分析的转座酶系统
- 批准号:
10210424 - 财政年份:2018
- 资助金额:
$ 233.39万 - 项目类别:
EAPSI: Developing Single Nucleus ATAC-seq to Map the Ageing Epigenome
EAPSI:开发单核 ATAC-seq 来绘制衰老表观基因组图谱
- 批准号:
1714070 - 财政年份:2017
- 资助金额:
$ 233.39万 - 项目类别:
Fellowship Award
A cloud-based learning module to analyze ATAC-seq and single cell ATAC-seq data
基于云的学习模块,用于分析 ATAC-seq 和单细胞 ATAC-seq 数据
- 批准号:
10558379 - 财政年份:2001
- 资助金额:
$ 233.39万 - 项目类别:














{{item.name}}会员




