Understanding the crosstalk between spatially separated RNP granules during cellular stress responses
了解细胞应激反应过程中空间分离的 RNP 颗粒之间的串扰
基本信息
- 批准号:BB/V014528/1
- 负责人:
- 金额:$ 56.32万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Living organisms are constantly prompted to respond to the environment. This includes to changes in levels of nutrients, temperature, oxygen, invasion by pathogens and signals such as hormones. To pause and adapt, a key event is to limit protein synthesis, an energy hungry process. In addition, several signals are sent throughout the cell to communicate a state of emergency coordinating widespread changes. This allows for an overhaul of proteins in the cell to favour proteins that facilitate survival under the new conditions. According to textbooks, the main organising principle of a cell is the membrane with organelles such as the endoplasmic reticulum or mitochondria, wrapped in lipid bilayers. However, recent research is rethinking this model. Membraneless organelles allow the segregation of molecules, providing a new paradigm for cell biology. They form as a consequence of a change in the physical properties of their components, which now concentrate into specific regions of the cell. Because membraneless organelles can speed up reactions between their components or act as temporary storage, they are perfectly suited to contribute to rapid adaptation during stress. Proteins are encoded by RNA copies of genes called messenger RNA (mRNA). These mRNAs interact with a range of RNA binding proteins (RBPs) that control their fate. In response to stress and protein synthesis inhibition, mRNAs and RBPs bound to them, together with many other proteins, rapidly compartmentalise in the cytoplasm forming stress granules (SGs). Identified 35 years ago they are a paradigm for membraneless organelles. Several functions have been proposed for SGs. First, they help triage and store mRNAs to define which ones are needed to adapt to the new conditions and which are superfluous. Second, they are important for storing proteins that can send signals to trigger specific responses to the stress. Third, they are important in diseases; if anomalous they can contribute to diseases of the brain and they form part of our antiviral measures. Finally, our own findings suggest their assembly is important to trigger further waves of compartmentalisation, controlling the assembly of another membraneless organelle, the paraspeckle, in the nucleus. Despite this, major unsolved questions remain about how SGs function. They are part of a universal first line response to stress, yet it is apparent that SGs with distinct components and properties form depending on the nature of the stress. How and why specific components are selected, and how they drive specific functions, is currently poorly understood. Furthermore how SGs and other membraneless organelles like paraspeckles communicate, and the importance of these coordinated waves of compartmentalisation in normal and pathological conditions is unknown. Building on our expertise in studying SGs and paraspeckles, we now want to uncover how they contribute to cellular adaptation and specialised functions during stress. Our research program will comprehensively fingerprint SGs and paraspeckles under a range of different stresses to identify their components, interactions and functions. We will also define the molecular mechanisms by which SGs regulate the assembly of paraspeckles, uncovering how they communicate, and whether they regulate the assembly of other compartments. We will establish how SGs and paraspeckles contribute to the cellular defences against viruses and how the anomalous SGs associated with neurodegenerative diseases impact on paraspeckle-mediated responses in brain cells. Our current experience in isolating these organelles, and novel tools developed to image them are key for the success of these studies.Ultimately, the outcome of this work will advance our understanding of novel and fundamental aspects of cell biology and importantly relate this to pathological conditions.
生物体不断地被促使对环境作出反应。这包括营养素水平的变化,温度,氧气,病原体和激素等信号的入侵。为了暂停和适应,一个关键事件是限制蛋白质合成,这是一个需要能量的过程。此外,几个信号被发送到整个细胞,以传达紧急状态协调广泛的变化。这允许对细胞中的蛋白质进行彻底检查,以有利于在新条件下促进生存的蛋白质。根据教科书,细胞的主要组织原则是膜与细胞器,如内质网或线粒体,包裹在脂质双层。然而,最近的研究正在重新思考这一模式。无膜细胞器允许分子分离,为细胞生物学提供了新的范例。它们的形成是由于其组分的物理性质发生变化,这些组分现在集中在细胞的特定区域。由于无膜细胞器可以加速其组成部分之间的反应或充当临时存储器,因此它们非常适合在压力期间促进快速适应。蛋白质由称为信使RNA(mRNA)的基因的RNA拷贝编码。这些mRNA与一系列控制其命运的RNA结合蛋白(RBP)相互作用。响应于应激和蛋白质合成抑制,与它们结合的mRNA和RBP以及许多其他蛋白质在细胞质中迅速区室化,形成应激颗粒(SG)。35年前被发现,它们是无膜细胞器的范例。已经为SG提出了若干功能。首先,它们帮助分类和储存mRNA,以确定哪些mRNA是适应新条件所需的,哪些是多余的。其次,它们对于储存蛋白质很重要,这些蛋白质可以发送信号来触发对压力的特定反应。第三,它们在疾病中很重要;如果异常,它们可能会导致大脑疾病,并且它们是我们抗病毒措施的一部分。最后,我们自己的研究结果表明,它们的组装对于引发进一步的区室化浪潮非常重要,可以控制细胞核中另一种无膜细胞器(副斑)的组装。尽管如此,关于SG如何运作的主要未解决问题仍然存在。它们是对压力的普遍第一线反应的一部分,但很明显,具有不同组分和性质的SG取决于压力的性质而形成。如何以及为什么选择特定的组件,以及它们如何驱动特定的功能,目前还知之甚少。此外,SG和其他无膜细胞器(如paraspeckles)如何通信,以及这些协调的区室化波在正常和病理条件下的重要性尚不清楚。基于我们在研究SG和paraspeckles方面的专业知识,我们现在想揭示它们如何在压力下促进细胞适应和专门功能。我们的研究计划将全面指纹SG和paraspeckles在一系列不同的压力,以确定其组成部分,相互作用和功能。我们还将定义SG调节paraspeckles组装的分子机制,揭示它们如何通信,以及它们是否调节其他隔室的组装。我们将确定SG和paraspeckles如何有助于细胞防御病毒,以及与神经退行性疾病相关的异常SG如何影响脑细胞中paraspeckle介导的反应。我们目前在分离这些细胞器方面的经验,以及开发用于成像它们的新工具是这些研究成功的关键。最终,这项工作的结果将促进我们对细胞生物学的新的和基本的方面的理解,并重要地将其与病理条件联系起来。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Batten disease protein CLN3 is important for stress granules dynamics and translational activity.
- DOI:10.1016/j.jbc.2023.104649
- 发表时间:2023-05
- 期刊:
- 影响因子:4.8
- 作者:Relton, Emily L.;Roth, Nicolas J.;Yasa, Seda;Kaleem, Abuzar;Hermey, Guido;Minnis, Christopher J.;Mole, Sara E.;Shelkovnikova, Tatyana;Lefrancois, Stephane;McCormick, Peter J.;Locker, Nicolas
- 通讯作者:Locker, Nicolas
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicolas Locker其他文献
Distinct roles for the IIId2 sub-domain in pestivirus and picornavirus internal ribosome entry sites
IIId2 子结构域在瘟病毒和小核糖体病毒内部核糖体进入位点中的不同作用
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:14.9
- 作者:
M. Willcocks;Salmah Zaini;N. Chamond;Nathalie Ulryck;D. Allouche;Noemie Rajagopalan;Nana A. Davids;U. Fahnøe;Johanne Hadsbjerg;T. Rasmussen;L. Roberts;B. Sargueil;G. Belsham;Nicolas Locker - 通讯作者:
Nicolas Locker
Comparative analysis of adaptive immune responses following experimental infections of cattle with bovine viral diarrhoea virus-1 and an Asiatic atypical ruminant pestivirus
- DOI:
10.1016/j.vaccine.2018.06.019 - 发表时间:
2018-07-16 - 期刊:
- 影响因子:
- 作者:
Victor Riitho;Magdalena Larska;Rebecca Strong;S. Anna La Rocca;Nicolas Locker;Stefan Alenius;Falko Steinbach;Lihong Liu;Åse Uttenthal;Simon P. Graham - 通讯作者:
Simon P. Graham
Ribopuromycylation in Coronavirus-Infected Cells
冠状病毒感染细胞中的核糖嘌呤霉素化
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
M. Brownsword;Helena J. Maier;Nicolas Locker - 通讯作者:
Nicolas Locker
Murine Norovirus infection results in anti-inflammatory response downstream of amino acids depletion in macrophages
鼠诺如病毒感染导致巨噬细胞氨基酸消耗下游的抗炎反应
- DOI:
10.1101/2021.04.22.441057 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Michèle Brocard;Jia Lu;B. Hall;Khushboo Borah;Carla Moller;Frédéric Sorgeloos;D. Beste;I. Goodfellow;Nicolas Locker - 通讯作者:
Nicolas Locker
Initiation Factor Genome-linked Viral Protein VPg and Interaction between the C Terminus of the Norovirus Translation Requires an Protein Synthesis and Degradation :
起始因子基因组相关病毒蛋白 VPg 与诺如病毒翻译 C 末端之间的相互作用需要蛋白质合成和降解:
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
L. Chung;D. Bailey;Eoin Leen;E. Emmott;Y. Chaudhry;L. Roberts;S. Curry;Nicolas Locker;I. Goodfellow - 通讯作者:
I. Goodfellow
Nicolas Locker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicolas Locker', 18)}}的其他基金
Friends or foes: dissecting the crosstalk between stress granules and viruses during infection
朋友还是敌人:剖析感染过程中应激颗粒和病毒之间的串扰
- 批准号:
BB/W015536/2 - 财政年份:2023
- 资助金额:
$ 56.32万 - 项目类别:
Research Grant
Characterising viral regulation of biocondensates dynamics and function
表征生物凝聚物动力学和功能的病毒调节
- 批准号:
BB/X018431/1 - 财政年份:2023
- 资助金额:
$ 56.32万 - 项目类别:
Research Grant
Understanding the crosstalk between spatially separated RNP granules during cellular stress responses
了解细胞应激反应过程中空间分离的 RNP 颗粒之间的串扰
- 批准号:
BB/V014528/2 - 财政年份:2023
- 资助金额:
$ 56.32万 - 项目类别:
Research Grant
Friends or foes: dissecting the crosstalk between stress granules and viruses during infection
朋友还是敌人:剖析感染过程中应激颗粒和病毒之间的串扰
- 批准号:
BB/W015536/1 - 财政年份:2022
- 资助金额:
$ 56.32万 - 项目类别:
Research Grant
The battle for the 5' end: dissecting a novel virus-specific translation mechanism driven by eIF3
5端之战:剖析由eIF3驱动的新型病毒特异性翻译机制
- 批准号:
BB/S006931/1 - 财政年份:2019
- 资助金额:
$ 56.32万 - 项目类别:
Research Grant
Enemy at the gate: a novel mechanism of paracrine stress granule induction by viruses
门口的敌人:病毒诱导旁分泌应激颗粒的新机制
- 批准号:
BB/P018068/1 - 财政年份:2018
- 资助金额:
$ 56.32万 - 项目类别:
Research Grant
Investigating the contribution of stress granules to mRNA translation during viral infection.
研究病毒感染期间应激颗粒对 mRNA 翻译的贡献。
- 批准号:
BB/R005230/1 - 财政年份:2017
- 资助金额:
$ 56.32万 - 项目类别:
Research Grant
Understanding the reprogramming of host mRNA translation during calicivirus infection
了解杯状病毒感染期间宿主 mRNA 翻译的重编程
- 批准号:
BB/N000943/1 - 财政年份:2016
- 资助金额:
$ 56.32万 - 项目类别:
Research Grant
相似国自然基金
基于TLR4/NF-κB与PPAR-γ/CD36信号通路间的crosstalk探讨黄芪多糖促进脑出血后血肿吸收的机制
- 批准号:JCZRQN202500623
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
西黄胶囊通过NLRP3/Caspase1/GSDMD/Beclin-1信号通路调控细胞焦亡-自噬Crosstalk机制治疗GLM的应用基础研究
- 批准号:2025JJ80699
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Spp1介导肾-肌crosstalk参与儿童CKD致肌少症的作用和机制
研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于外泌体源性线粒体介导小胶质细胞-神经元crosstalk探讨改善AD认知的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于线粒体生物发生介导的软骨细胞-巨噬细胞衰老Crosstalk探讨曲直汤延缓KOA进展的作用机制
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于胰岛巨噬细胞-β细胞免疫Crosstalk诱导β细胞去分化研究T2DM“火”-“气”互作科学内涵及泻火固正法干预机制
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
HDACs信号通路通过与星形胶质细胞NF-κb信号通路Crosstalk调控TREM2+小胶质细胞影响糖尿病脑卒中后神经功能的研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
基于Exos-miRHAs探讨大量灵仙方调控肝巨细胞-胆管细胞crosstalk参与胆管炎性-EMT持抗胆石形成的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
复方肠泰方通过“ 精氨酸甲基化-泛素化crosstalk”调控铁死亡
的抗结直肠癌作用机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
“肌-脑crosstalk”视阈下太极拳训练对2型糖尿病合并脑小血管病患者的脑血管保护效应研究
- 批准号:2024Y9478
- 批准年份:2024
- 资助金额:50.0 万元
- 项目类别:省市级项目
相似海外基金
Investigation of crosstalk between Fanconi Anemia pathway and ATM for novel therapeutic strategies of chemoresistant ALT-positive high-risk neuroblastoma
范可尼贫血通路与 ATM 之间的串扰研究,用于化疗耐药 ALT 阳性高危神经母细胞瘤的新治疗策略
- 批准号:
24K10442 - 财政年份:2024
- 资助金额:
$ 56.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Crosstalk between purinergic signaling and the complement system in sepsis-induced immunosuppression.
脓毒症引起的免疫抑制中嘌呤能信号传导与补体系统之间的串扰。
- 批准号:
23H03013 - 财政年份:2023
- 资助金额:
$ 56.32万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Friends or foes: dissecting the crosstalk between stress granules and viruses during infection
朋友还是敌人:剖析感染过程中应激颗粒和病毒之间的串扰
- 批准号:
BB/W015536/2 - 财政年份:2023
- 资助金额:
$ 56.32万 - 项目类别:
Research Grant
Crosstalk between PAK1 signalling and intracellular trafficking
PAK1 信号传导与细胞内运输之间的串扰
- 批准号:
MR/X008649/1 - 财政年份:2023
- 资助金额:
$ 56.32万 - 项目类别:
Research Grant
UNRAVELLING THE CROSSTALK BETWEEN TISSUE-RESIDENT CD4+ T CELLS AND STROMAL CELLS DRIVING LIVER FIBROSIS
解开组织驻留 CD4 T 细胞和基质细胞之间驱动肝纤维化的串扰
- 批准号:
EP/X020827/1 - 财政年份:2023
- 资助金额:
$ 56.32万 - 项目类别:
Research Grant
Actin gating of crosstalk between Rho GTPases in cell migration
细胞迁移中 Rho GTP 酶之间串扰的肌动蛋白门控
- 批准号:
10736927 - 财政年份:2023
- 资助金额:
$ 56.32万 - 项目类别:
Disturbed Crosstalk between Cholesterol Homeostasis and Inflammation Resolution in NASH
NASH 中胆固醇稳态与炎症消退之间的干扰串扰
- 批准号:
10568478 - 财政年份:2023
- 资助金额:
$ 56.32万 - 项目类别:
Elucidate the pathophysiology of febrile status epilepticus derived from crosstalk between inflammation and microRNAs.
阐明源自炎症和 microRNA 之间串扰的发热性癫痫持续状态的病理生理学。
- 批准号:
23K15630 - 财政年份:2023
- 资助金额:
$ 56.32万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of crosstalk between neurodevelopmental disorders and tumorigenesis and development of novel therapeutic drugs
阐明神经发育障碍与肿瘤发生之间的串扰以及新型治疗药物的开发
- 批准号:
23K18264 - 财政年份:2023
- 资助金额:
$ 56.32万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Crosstalk Ca2+ Signaling between Ryanodine Receptors Type 1 and 2 in the Pathogenesis of Cardiac Hypertrophy and Heart Failure
心脏肥大和心力衰竭发病机制中 1 型和 2 型 Ryanodine 受体之间的串扰 Ca2 信号传导
- 批准号:
10660636 - 财政年份:2023
- 资助金额:
$ 56.32万 - 项目类别:














{{item.name}}会员




