Understanding the reprogramming of host mRNA translation during calicivirus infection

了解杯状病毒感染期间宿主 mRNA 翻译的重编程

基本信息

  • 批准号:
    BB/N000943/1
  • 负责人:
  • 金额:
    $ 44.01万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Our overarching aim is to understand the mechanism by which a group of poorly characterised, yet important viruses, regulate host gene expression to modulate how cells respond to viral infection Cells within the body respond to environmental stimuli and pathogen infection in many ways, the most common of which is via the regulation of cellular gene expression. The expression of the information stored in our genes is tightly controlled at numerous levels, to ensure that the correct protein is produced at the right time and quantity. First, the genetic information encoded in our DNA is converted into messenger RNA (mRNA), via a process called transcription. The mRNA is then "translated" into proteins by structures referred to as ribosomes, assisted by proteins called initiation factors. eIF4E is one of these proteins and its key role is to direct the ribosomes and other proteins to the mRNA. This process is called translation and the synthesised proteins make our cells what they are, defining their properties and functions. Importantly, changes to the proteins in our cells also help to fight against invading pathogens such as viruses. While viruses can infect most organisms and cause severe damage, they consist primarily of RNA or DNA enclosed in a protein coat and lack the factors required for replication and dissemination. They are therefore dependent on the host cell resources to produce viral proteins. Thus, many viruses have developed strategies that regulate the function of the host protein synthesis machinery, often leading to preferentially translation of viral mRNAs. Caliciviruses are a family of small viruses that can cause diseases both in humans and animals. In humans they primarily cause gastroenteritis. While the human norovirus, a calicivirus, does not grow well in cell culture, murine norovirus, a mouse homologue, acts as model with which to study many aspects of calicivirus biology in the laboratory. It represents an excellent model to dissect how viruses affect the translation of host cell proteins. Using this model we have previously made a number of significant advances in the understanding of how the caliciviruses produce viral proteins. We found that a virus-encoded protein, called VPg, is essential for the translation of viral mRNA as it coordinates the recruitment of host proteins to the viral RNA. We also showed that calicivirus infection modulates the composition and activity of the host translation machinery. However, we still know very little about how pathogens in general, and caliciviruses in particular, modulate the translation of host mRNAs during infection. This is important because understanding the modulation of specific host mRNA translation by viruses can reveal how viruses manipulate the organism's response to infection. Our hypothesis is that caliciviruses alter the translation of specific mRNAs in the infected host to regulate antiviral gene expression, and that they do so by modulating the translation factor eIF4E. Therefore, our objectives are to use high-throughput sequencing and biochemical methods to 1- characterize how the viral infection alters the profile of mRNAs that are translated by the infected host and 2- to understand how the activity of eIF4E is regulated by caliciviruses during this process. If we can fully understand how caliciviruses control the activity of translation factors and reprogramme the host protein synthesis, we can identify ways to inhibit virus replication. Therefore, our work will aid in the development of novel antiviral therapies for this important group of viruses, and perhaps other viruses that regulate translation. Understanding the fundamental mechanisms of gene regulation is important not only for virologists but also for broader academic communities. By advancing our basic knowledge of translational control we may understand better several pathologies that are linked to modulation of eIF4E activity, such as cancer and diabetes.
我们的首要目标是了解一组特征不明确但重要的病毒调节宿主基因表达以调节细胞对病毒感染的反应的机制体内细胞以多种方式对环境刺激和病原体感染作出反应,其中最常见的是通过调节细胞基因表达。储存在我们基因中的信息的表达在许多层面上受到严格控制,以确保在正确的时间和数量产生正确的蛋白质。首先,我们DNA中编码的遗传信息通过一个称为转录的过程转化为信使RNA(mRNA)。然后,mRNA被称为核糖体的结构“翻译”成蛋白质,并由称为起始因子的蛋白质协助。eIF 4 E是这些蛋白质之一,其关键作用是将核糖体和其他蛋白质引导至mRNA。这个过程被称为翻译,合成的蛋白质使我们的细胞成为它们,定义它们的特性和功能。重要的是,我们细胞中蛋白质的变化也有助于对抗入侵的病原体,如病毒。虽然病毒可以感染大多数生物并造成严重损害,但它们主要由包裹在蛋白质外壳中的RNA或DNA组成,缺乏复制和传播所需的因子。因此,它们依赖于宿主细胞资源来产生病毒蛋白。因此,许多病毒已经开发出调节宿主蛋白质合成机制功能的策略,通常导致病毒mRNA的优先翻译。杯状病毒是一个小病毒家族,可以在人类和动物中引起疾病。在人类中,它们主要引起胃肠炎。虽然人类诺如病毒(一种杯状病毒)在细胞培养物中生长不良,但小鼠诺如病毒(一种小鼠同源物)可作为模型,用于在实验室中研究杯状病毒生物学的许多方面。它代表了一个很好的模型来剖析病毒如何影响宿主细胞蛋白质的翻译。使用这个模型,我们以前在理解杯状病毒如何产生病毒蛋白方面取得了许多重大进展。我们发现,病毒编码的蛋白质,称为VPg,是必不可少的病毒mRNA的翻译,因为它协调招聘的宿主蛋白质的病毒RNA。我们还表明,杯状病毒感染调节宿主翻译机器的组成和活动。然而,我们对病原体,特别是杯状病毒在感染过程中如何调节宿主mRNA的翻译仍然知之甚少。这一点很重要,因为了解病毒对特定宿主mRNA翻译的调节可以揭示病毒如何操纵生物体对感染的反应。我们的假设是杯状病毒改变感染宿主中特定mRNA的翻译以调节抗病毒基因的表达,并且它们通过调节翻译因子eIF 4 E来实现。因此,我们的目标是使用高通量测序和生物化学方法来1-表征病毒感染如何改变被感染宿主翻译的mRNA的谱,2-了解杯状病毒在此过程中如何调节eIF 4 E的活性。如果我们能够完全理解杯状病毒如何控制翻译因子的活性并重新编程宿主蛋白质的合成,我们就可以找到抑制病毒复制的方法。因此,我们的工作将有助于为这一重要的病毒群开发新的抗病毒疗法,也许还有其他调节翻译的病毒。了解基因调控的基本机制不仅对病毒学家而且对更广泛的学术界都很重要。通过推进我们的翻译控制的基础知识,我们可以更好地了解与eIF 4 E活性调节相关的几种病理,如癌症和糖尿病。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Murine Norovirus Infection Results in Anti-inflammatory Response Downstream of Amino Acid Depletion in Macrophages
  • DOI:
    10.1128/jvi.01134-21.4
  • 发表时间:
    2021-10-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Brocard, Michele;Lu, Jia;Locker, Nicolas
  • 通讯作者:
    Locker, Nicolas
Norovirus infection results in eIF2a independent host translation shut-off and remodels the G3BP1 interactome evading stress granule formation
诺如病毒感染导致 eIF2a 独立宿主翻译关闭,并重塑 G3BP1 相互作用组以逃避应激颗粒形成
  • DOI:
    10.17863/cam.48046
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brocard M
  • 通讯作者:
    Brocard M
Norovirus infection results in assembly of virus-specific G3BP1 granules and evasion of eIF2a signaling
诺如病毒感染导致病毒特异性 G3BP1 颗粒组装并逃避 eIF2a 信号传导
  • DOI:
    10.1101/490318
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brocard M
  • 通讯作者:
    Brocard M
Infectious Bronchitis Virus Regulates Cellular Stress Granule Signaling
  • DOI:
    10.1101/819482
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Brownsword;Nicole Doyle;Michèle Brocard;Nicolas Locker;Helena J. Maier
  • 通讯作者:
    M. Brownsword;Nicole Doyle;Michèle Brocard;Nicolas Locker;Helena J. Maier
Murine Norovirus Infection Results in Anti-inflammatory Response Downstream of Amino Acid Depletion in Macrophages.
  • DOI:
    10.1128/jvi.01134-21
  • 发表时间:
    2021-09-27
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Brocard M;Lu J;Hall B;Borah K;Moller-Levet C;Georgana I;Sorgeloos F;Beste DJV;Goodfellow IG;Locker N
  • 通讯作者:
    Locker N
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicolas Locker其他文献

Distinct roles for the IIId2 sub-domain in pestivirus and picornavirus internal ribosome entry sites
IIId2 子结构域在瘟病毒和小核糖体病毒内部核糖体进入位点中的不同作用
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    M. Willcocks;Salmah Zaini;N. Chamond;Nathalie Ulryck;D. Allouche;Noemie Rajagopalan;Nana A. Davids;U. Fahnøe;Johanne Hadsbjerg;T. Rasmussen;L. Roberts;B. Sargueil;G. Belsham;Nicolas Locker
  • 通讯作者:
    Nicolas Locker
Comparative analysis of adaptive immune responses following experimental infections of cattle with bovine viral diarrhoea virus-1 and an Asiatic atypical ruminant pestivirus
  • DOI:
    10.1016/j.vaccine.2018.06.019
  • 发表时间:
    2018-07-16
  • 期刊:
  • 影响因子:
  • 作者:
    Victor Riitho;Magdalena Larska;Rebecca Strong;S. Anna La Rocca;Nicolas Locker;Stefan Alenius;Falko Steinbach;Lihong Liu;Åse Uttenthal;Simon P. Graham
  • 通讯作者:
    Simon P. Graham
Ribopuromycylation in Coronavirus-Infected Cells
冠状病毒感染细胞中的核糖嘌呤霉素化
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Brownsword;Helena J. Maier;Nicolas Locker
  • 通讯作者:
    Nicolas Locker
Murine Norovirus infection results in anti-inflammatory response downstream of amino acids depletion in macrophages
鼠诺如病毒感染导致巨噬细胞氨基酸消耗下游的抗炎反应
  • DOI:
    10.1101/2021.04.22.441057
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michèle Brocard;Jia Lu;B. Hall;Khushboo Borah;Carla Moller;Frédéric Sorgeloos;D. Beste;I. Goodfellow;Nicolas Locker
  • 通讯作者:
    Nicolas Locker
Initiation Factor Genome-linked Viral Protein VPg and Interaction between the C Terminus of the Norovirus Translation Requires an Protein Synthesis and Degradation :
起始因子基因组相关病毒蛋白 VPg 与诺如病毒翻译 C 末端之间的相互作用需要蛋白质合成和降解:
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Chung;D. Bailey;Eoin Leen;E. Emmott;Y. Chaudhry;L. Roberts;S. Curry;Nicolas Locker;I. Goodfellow
  • 通讯作者:
    I. Goodfellow

Nicolas Locker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicolas Locker', 18)}}的其他基金

Friends or foes: dissecting the crosstalk between stress granules and viruses during infection
朋友还是敌人:剖析感染过程中应激颗粒和病毒之间的串扰
  • 批准号:
    BB/W015536/2
  • 财政年份:
    2023
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Research Grant
Characterising viral regulation of biocondensates dynamics and function
表征生物凝聚物动力学和功能的病毒调节
  • 批准号:
    BB/X018431/1
  • 财政年份:
    2023
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Research Grant
Understanding the crosstalk between spatially separated RNP granules during cellular stress responses
了解细胞应激反应过程中空间分离的 RNP 颗粒之间的串扰
  • 批准号:
    BB/V014528/2
  • 财政年份:
    2023
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Research Grant
Understanding the crosstalk between spatially separated RNP granules during cellular stress responses
了解细胞应激反应过程中空间分离的 RNP 颗粒之间的串扰
  • 批准号:
    BB/V014528/1
  • 财政年份:
    2022
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Research Grant
Friends or foes: dissecting the crosstalk between stress granules and viruses during infection
朋友还是敌人:剖析感染过程中应激颗粒和病毒之间的串扰
  • 批准号:
    BB/W015536/1
  • 财政年份:
    2022
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Research Grant
The battle for the 5' end: dissecting a novel virus-specific translation mechanism driven by eIF3
5端之战:剖析由eIF3驱动的新型病毒特异性翻译机制
  • 批准号:
    BB/S006931/1
  • 财政年份:
    2019
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Research Grant
Enemy at the gate: a novel mechanism of paracrine stress granule induction by viruses
门口的敌人:病毒诱导旁分泌应激颗粒的新机制
  • 批准号:
    BB/P018068/1
  • 财政年份:
    2018
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Research Grant
Investigating the contribution of stress granules to mRNA translation during viral infection.
研究病毒感染期间应激颗粒对 mRNA 翻译的贡献。
  • 批准号:
    BB/R005230/1
  • 财政年份:
    2017
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Research Grant

相似国自然基金

调控拟南芥体细胞再生关键基因的鉴定
  • 批准号:
    32000507
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
中性粒细胞在体内条件下重编程为造血干祖细胞的研究
  • 批准号:
    92068101
  • 批准年份:
    2020
  • 资助金额:
    80.0 万元
  • 项目类别:
    重大研究计划
细胞衰老抑制直接重编程及心肌再生修复的分子机理研究
  • 批准号:
    92068107
  • 批准年份:
    2020
  • 资助金额:
    79.0 万元
  • 项目类别:
    重大研究计划
m6A识别蛋白YTHDFs在体细胞重编程中的调控作用及机制研究
  • 批准号:
    32000501
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
人干细胞分化和重编程过程中的R-环变化规律研究
  • 批准号:
    32000500
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
转录因子SALL4通过影响pre-mRNA可变剪接调控非Yamanaka因子体细胞重编程的机制研究
  • 批准号:
    32000502
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
小分子化合物促进肝细胞增殖和肝脏再生的研究
  • 批准号:
    32000504
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
转录因子剂量效应调控体细胞重编程的表观遗传机制研究
  • 批准号:
    31970681
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Project 1: KSHV reprograms replication and metabolic activities in hypoxia
项目 1:KSHV 在缺氧条件下重新编程复制和代谢活动
  • 批准号:
    10714173
  • 财政年份:
    2023
  • 资助金额:
    $ 44.01万
  • 项目类别:
Reprogramming Gene Regulatory Networks to a Hematopoietic Stem Cell State
将基因调控网络重编程为造血干细胞状态
  • 批准号:
    10716641
  • 财政年份:
    2023
  • 资助金额:
    $ 44.01万
  • 项目类别:
Reprogramming of tissue structural cells by cutaneous CD4+ T cells
皮肤 CD4 T 细胞对组织结构细胞的重编程
  • 批准号:
    10608777
  • 财政年份:
    2023
  • 资助金额:
    $ 44.01万
  • 项目类别:
Tumor suppressor reprogramming by EBV through post-translational modification
EBV 通过翻译后修饰重编程肿瘤抑制因子
  • 批准号:
    10402055
  • 财政年份:
    2022
  • 资助金额:
    $ 44.01万
  • 项目类别:
Deciphering the complexities of inflammasome activation following RSV infection
破译 RSV 感染后炎症小体激活的复杂性
  • 批准号:
    10655297
  • 财政年份:
    2022
  • 资助金额:
    $ 44.01万
  • 项目类别:
Gut Microbiota and Host Regulatory Cross-Talk in Pulmonary Fibrosis
肺纤维化中的肠道微生物群和宿主调节相互作用
  • 批准号:
    10414838
  • 财政年份:
    2022
  • 资助金额:
    $ 44.01万
  • 项目类别:
Investigating the influence of the microbiome on dendritic cell function
研究微生物组对树突状细胞功能的影响
  • 批准号:
    485946
  • 财政年份:
    2022
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Studentship Programs
Mechanisms and Treatment of SARS-CoV-2 induced Lung Endothelial Injury
SARS-CoV-2引起的肺内皮损伤的机制和治疗
  • 批准号:
    10559640
  • 财政年份:
    2022
  • 资助金额:
    $ 44.01万
  • 项目类别:
Microbiota-derived metabolites and the regulation of host immunity and inflammation
微生物群衍生的代谢物以及宿主免疫和炎症的调节
  • 批准号:
    10512805
  • 财政年份:
    2022
  • 资助金额:
    $ 44.01万
  • 项目类别:
Nutritional immunity and microbial competition during Clostridioides difficile infection
艰难梭菌感染期间的营养免疫和微生物竞争
  • 批准号:
    10643887
  • 财政年份:
    2022
  • 资助金额:
    $ 44.01万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了