Control of cell fate decisions by dynamic signalling filopodia
通过动态信号丝状伪足控制细胞命运决定
基本信息
- 批准号:BB/V015060/1
- 负责人:
- 金额:$ 73.34万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In order for a fertilised egg to develop into a multicellular organism, cells communicate with each other by sending signals that cause receiving cells to change the type of cell they become, i.e. their fate. While it was originally thought that such signals diffuse in the extracellular space until they reach the receiving cell, recently it has been shown that instead a receiving cell can extend a finger like projection, or filopodium, to directly collect the signal from the source cell. Therefore, these type of 'signalling filopodia' are a new way of thinking about cellular communication. Our research studies signalling filopodia using the classic model, the fruitfly Drosophila, as it develops quickly and is very amenable to genetics and genome engineering. Moreover, the same signals that are used during human development and tissue homeostasis are found in the fruitfly where they are also essential for development. Bone Morphogenetic Proteins (BMPs) are one of the major types of cell signals, which are necessary for development of nearly all organs and tissues. We study Drosophila germline stem cells (GSCs), which are critical for continued egg production and represent a powerful model for studying stem cells. BMPs released by other cells in the ovary are critical for maintaining the stem cell fate. Our recent data show that these GSCs make signalling filopodia to collect the BMP signal.When the GSC divides, one daughter stays as a GSC whereas the other differentiates into a different cell type. We have also detected signalling filopodia on the differentiating cells in the ovary, but their function is completely unknown. Our exciting hypothesis is that the filopodia exist on differentiating cells so that they can, when required, collect the BMP signal which induces them to revert back to a stem cell, called dedifferentiation. While dedifferentiation is critically important in the body, for example during tissue repair following injury, it is difficult to study. Here we will exploit the Drosophila model, as an experimental strategy for inducing dedifferentiation back to GSCs has been described.In this proposal we aim to determine how the signalling filopodia allow receipt of the BMP signal and in turn how this influences GSC behaviour. To achieve this goal we will use state-of-the-art microscopy approaches, which will allow us to image the signalling filopodia and the localization of proteins on them for hours at a time, to answer three key questions. Firstly, how do the signalling filopodia reach their target cells to collect the signal? Secondly, how do the filopodia control the amount of signalling inside the cell? Thirdly, do the signalling filopodia on differentiating cells collect the BMP signal to promote dedifferentiation when required?Overall our data will provide important new information in relation to this new concept for cell signalling, via signalling filopodia. Our findings will be broadly relevant to other stem cell systems, as it has been shown that different types of stem cells also use signalling filopodia to collect signals. Moreover, by identifying a role for signalling filopodia in mediating dedifferentiation back to a stem cell fate, our data will ultimately be useful in the development of improved strategies for the regeneration of damaged tissues and organs.
为了使受精卵发育成多细胞生物,细胞通过发送信号来彼此通信,这些信号会导致接收细胞改变其命运的细胞类型。虽然最初认为这种信号在细胞外空间中扩散直到到达接收单元,但最近已经表明,一个接收单元可以延伸像投影或丝状的手指,以直接从源单元中收集信号。因此,这些类型的“信号传导丝状”是一种关于细胞通信的新方法。我们的研究研究使用经典模型,果蝇果蝇(Fruitfly Drosophila)发达,这很快就会发育,并且非常适合遗传学和基因组工程。此外,在人类发育和组织稳态期间使用的相同信号在果蝇中也发现它们对于发育也是必不可少的。骨形态发生蛋白(BMP)是细胞信号的主要类型,这对于几乎所有器官和组织的发展都是必需的。我们研究果蝇种系干细胞(GSC),这对于持续产卵至关重要,代表了研究干细胞的强大模型。卵巢中其他细胞释放的BMP对于维持干细胞命运至关重要。我们最近的数据表明,这些GSC使信号传导丝状疾病收集BMP信号。当GSC划分时,一个女儿保持为GSC,而另一个女儿则将其区分为另一种细胞类型。我们还检测到卵巢中分化细胞上的信号传导丝状虫,但它们的功能是完全未知的。我们令人兴奋的假设是,丝状虫存在于区分细胞上,因此可以在需要时收集BMP信号,该信号诱导它们恢复为干细胞,称为DEDIDFEFFERTIDITION。虽然去分化在体内至关重要,例如在受伤后的组织修复期间,但很难研究。在这里,我们将利用果蝇模型,作为一种实验策略,以诱导DeDiventiation返回GSC。在此提案中,我们旨在确定信号传导丝毫允许如何接收BMP信号,从而如何影响GSC行为。为了实现这一目标,我们将使用最新的显微镜方法,这将使我们能够一次数小时的信号传导丝状和蛋白质的定位来回答三个关键问题。首先,信号传导丝状如何到达其目标细胞以收集信号?其次,丝状如何控制细胞内部的信号传导量?第三,在需要时,是否会在需要时收集BMP信号的信号传导丝状症?总的来说,我们的数据将通过信号丝状丝虫来提供与此新概念有关的重要新信息。我们的发现将与其他干细胞系统广泛相关,因为已经表明,不同类型的干细胞还使用信号丝状虫收集信号。此外,通过确定信号传导丝状疾病在介导回干细胞命运中的作用,我们的数据最终将有助于改善损坏组织和器官再生的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hilary Ashe其他文献
13-P101 Regulation of BMP signalling by collagen IV in flies and fish
- DOI:
10.1016/j.mod.2009.06.574 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:
- 作者:
Annick Sawala;Hilary Ashe - 通讯作者:
Hilary Ashe
17-P002 Brat represses BMP signalling to promote and maintain <em>Drosophila</em> germline stem cell differentiation
- DOI:
10.1016/j.mod.2009.06.723 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:
- 作者:
Robin Harris;Hilary Ashe - 通讯作者:
Hilary Ashe
Hilary Ashe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hilary Ashe', 18)}}的其他基金
Dissecting ribosome pausing during embryogenesis: from global and single molecule studies to whole embryo phenotypes
剖析胚胎发生过程中的核糖体暂停:从整体和单分子研究到整个胚胎表型
- 批准号:
BB/X007294/1 - 财政年份:2024
- 资助金额:
$ 73.34万 - 项目类别:
Research Grant
Stem cell fate: exploiting the Drosophila germline to unravel the role of a conserved translation repression complex
干细胞命运:利用果蝇种系揭示保守翻译抑制复合物的作用
- 批准号:
BB/J005746/1 - 财政年份:2012
- 资助金额:
$ 73.34万 - 项目类别:
Research Grant
Characterisation of distinct eIF4E mRNA cap binding proteins during early Drosophila development
果蝇早期发育过程中不同 eIF4E mRNA 帽结合蛋白的表征
- 批准号:
BB/D010357/1 - 财政年份:2006
- 资助金额:
$ 73.34万 - 项目类别:
Research Grant
相似国自然基金
核苷酸代谢酶氧化修饰调控上皮干细胞命运在口腔白斑病光动力治疗复发中的机制与意义研究
- 批准号:82330029
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
中枢神经系统免疫豁免微环境中CAR-T细胞的抗淋巴瘤效应与命运转归
- 批准号:82330004
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
DNMT1在胶质母细胞瘤干细胞分化启动与命运决定中的调控作用研究
- 批准号:32300478
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
解析γδT细胞及其祖细胞的起源层级和命运决定
- 批准号:82300131
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
小鼠睾丸间质细胞的发育命运研究
- 批准号:32300678
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mapping the integration of T cell fate control across time and space
绘制 T 细胞命运控制跨时间和空间的整合图
- 批准号:
DP240101851 - 财政年份:2024
- 资助金额:
$ 73.34万 - 项目类别:
Discovery Projects
Cytoprotective pathways in esophageal squamous epithelia
食管鳞状上皮的细胞保护途径
- 批准号:
10660394 - 财政年份:2023
- 资助金额:
$ 73.34万 - 项目类别:
Chemical Genetic Dissection of SWI/SNF Chromatin Remodeling Complex Functions in Cerebral Cortex Development
大脑皮层发育中 SWI/SNF 染色质重塑复杂功能的化学遗传学解析
- 批准号:
10660367 - 财政年份:2023
- 资助金额:
$ 73.34万 - 项目类别:
Elucidating the Role of YAP and TAZ in the Aging Human Ovary
阐明 YAP 和 TAZ 在人类卵巢衰老中的作用
- 批准号:
10722368 - 财政年份:2023
- 资助金额:
$ 73.34万 - 项目类别:
Cell cycle control of cell polarity and fate in epidermal morphogenesis
表皮形态发生中细胞极性和命运的细胞周期控制
- 批准号:
10608036 - 财政年份:2023
- 资助金额:
$ 73.34万 - 项目类别: