Translational Control by Human Pumilio Proteins
人类 Pumilio 蛋白的翻译控制
基本信息
- 批准号:10712307
- 负责人:
- 金额:$ 37.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-18 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AgingBindingBiochemicalBiological AssayBiological ProcessBiologyCellsChemicalsComplexCytoplasmDataData AnalysesDefectDevelopmentDiseaseEmbryonic DevelopmentEnzymesFractionationFunctional disorderGametogenesisGene ExpressionGene Expression RegulationGenesGeneticGoalsHematopoiesisHumanIn VitroInfertilityIntellectual functioning disabilityKnowledgeLeadLinkMalignant NeoplasmsMapsMeasuresMediatingMediatorMessenger RNANerve DegenerationOutcomePathogenesisPoly(A)-Binding Protein IPoly(A)-Binding ProteinsPolyribosomesPositioning AttributePrevalenceProcessProductionProteinsProteomeRNARNA DecayRNA DegradationRNA SequencesRNA-Binding ProteinsRegulationReporterRepressionResearchResolutionResponse ElementsRibosomesRoleSeizuresSpecific qualifier valueStructureTailTimeTranslation ProcessTranslational RegulationTranslational RepressionTranslationsexperimental studygene repressiongenetic informationhuman diseaseimprovedin vivoinsightmRNA DecaymRNA Transcript DegradationmRNA Translationmitochondrial dysfunctionnervous system disorderneurogenesispolyadenosineposttranscriptionalrecruitribosome profilingstem cell fatesynergismtooltranscription regulatory networktranslation factor
项目摘要
Project Summary
The human RNA-binding proteins, PUM1 and PUM2, are essential for mammalian development and their
dysfunction is linked to multiple human diseases including developmental defects, neurological disorders,
infertility, cancers, and mitochondrial dysfunction. These important functions compel our overall objective to
discover how PUM1&2 control the flow of genetic information from gene to mRNA to protein and to identify the
full repertoire of genes that they regulate. PUM1&2 bind to thousands of mRNAs in human cells by recognizing
an RNA sequence called the Pumilio Response Element (PRE). Previous research showed that PUM1&2
promote degradation of hundreds of these PRE-containing mRNAs by recruiting RNA decay enzymes. It is now
clear, however, that this mechanism represents only one type of PUM-mediated regulatory outcome. Thousands
of mRNAs are bound by PUM1&2 but are not degraded. Therefore, it is now necessary to determine how
PUM1&2 control the fate of all target mRNAs. The resulting data will provide a comprehensive view of their
regulatory roles in biology and pathogenesis.
We propose that human PUM1&2 repress many target mRNAs by inhibiting the process of translation.
This hypothesis is supported by multiple examples of genes that are repressed by PUM1&2 at the level of protein
abundance in the absence of mRNA degradation. The mechanism and prevalence of this translational inhibition
is unknown. In addition, our data indicate that for some genes PUM-mediated translational inhibition can
synergize with RNA degradation to regulate gene expression to a larger extent than either process alone.
RNA molecules form structures that influence their function and fate. While biochemical evidence
indicates that RNA structure can modulate PUM-PRE interactions, its effect in vivo remains unknown. In fact,
there is an overall lack of RNA structural information of mRNAs in human cells that limits our understanding of
how that structure influences gene regulation by RNA-binding proteins like PUM1&2.
The proposed research seeks to determine how PUM1&2 inhibit translation and to identify the
translational regulatory factors that are necessary for PUM1&2 activity. The structure of human mRNAs will be
determined and its effect on PUM-mRNA interactions and regulatory network will be analyzed. By integrating
this new data with existing knowledge of which mRNAs are bound and degraded by PUM1&2, we will develop a
comprehensive understanding of this key genetic regulatory network. Discovery of the full regulatory network of
PUM1&2 will provide new insights into how they control gene expression to regulate normal biological processes.
Moreover, this knowledge will help elucidate how their dysfunction leads to diseases such as neurodegeneration
and cancer.
项目摘要
人RNA结合蛋白,R11和R12,是哺乳动物发育所必需的,
功能障碍与多种人类疾病有关,包括发育缺陷,神经障碍,
不孕症癌症和线粒体功能障碍这些重要的职能迫使我们的总体目标是
发现BMP 1和BMP 2如何控制遗传信息从基因到mRNA再到蛋白质的流动,
它们所调控的全部基因在人类细胞中,BMP 1和BMP 2通过识别
Pumilio响应元件(PRE)。先前的研究表明,
通过募集RNA降解酶促进数百种含有PRE的mRNA的降解。现在
然而,很明显,这种机制只代表了一种类型的神经网络介导的调节结果。数千
的mRNA被β 1和β 2结合,但不被降解。因此,现在有必要确定如何
β 1和β 2控制所有靶mRNA的命运。由此产生的数据将提供一个全面的看法,
在生物学和发病机制中的调节作用。
我们认为人的BMP 1和BMP 2通过抑制翻译过程来抑制许多靶mRNA。
这一假设得到了多个基因在蛋白质水平上被BMP 1和BMP 2抑制的例子的支持
在没有mRNA降解的情况下的丰度。这种翻译抑制的机制和普遍性
不明此外,我们的数据表明,对于某些基因,β-内酰胺酶介导的翻译抑制可以
与RNA降解协同作用以比单独的任一过程更大程度地调节基因表达。
RNA分子形成影响其功能和命运的结构。虽然生化证据
表明RNA结构可以调节RNA-PRE相互作用,但其在体内的作用尚不清楚。事实上,
人类细胞中mRNA的RNA结构信息总体上缺乏,这限制了我们对
这种结构是如何通过RNA结合蛋白(如RNA结合蛋白1和RNA结合蛋白2)影响基因调控的。
这项研究旨在确定BMP 1和BMP 2如何抑制翻译,并确定BMP 1和BMP 2在翻译中的作用。
翻译调节因子,其是α 1和β 2活性所必需的。人类mRNA的结构将
并分析其对mRNA相互作用和调控网络的影响。通过整合
这些新的数据与现有的知识,其中mRNA的结合和降解的BMP 1和2,我们将开发一个
全面了解这一关键的遗传调控网络。发现完整的监管网络,
EST1&2将为它们如何控制基因表达以调节正常的生物过程提供新的见解。
此外,这些知识将有助于阐明他们的功能障碍如何导致神经变性等疾病
和癌症
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Charles Goldstrohm其他文献
Aaron Charles Goldstrohm的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Charles Goldstrohm', 18)}}的其他基金
mRNA regulatory functions of the Drosophila TRIM-NHL protein, Brat
果蝇 TRIM-NHL 蛋白 Brat 的 mRNA 调节功能
- 批准号:
10794673 - 财政年份:2022
- 资助金额:
$ 37.97万 - 项目类别:
mRNA regulatory functions of the Drosophila TRIM-NHL protein, Brat
果蝇 TRIM-NHL 蛋白 Brat 的 mRNA 调节功能
- 批准号:
10418852 - 财政年份:2022
- 资助金额:
$ 37.97万 - 项目类别:
mRNA regulatory functions of the Drosophila TRIM-NHL protein, Brat
果蝇 TRIM-NHL 蛋白 Brat 的 mRNA 调节功能
- 批准号:
10670824 - 财政年份:2022
- 资助金额:
$ 37.97万 - 项目类别:
Novel Regulatory Mechanisms of Drosophila Pumilio
果蝇 Pumilio 的新型调控机制
- 批准号:
10312121 - 财政年份:2013
- 资助金额:
$ 37.97万 - 项目类别:
Novel regulatory mechanisms of Drosophila Pumilio and Nanos
果蝇 Pumilio 和 Nanos 的新调控机制
- 批准号:
8738690 - 财政年份:2013
- 资助金额:
$ 37.97万 - 项目类别:
Novel regulatory mechanisms of Drosophila Pumilio and Nanos
果蝇 Pumilio 和 Nanos 的新调控机制
- 批准号:
8476706 - 财政年份:2013
- 资助金额:
$ 37.97万 - 项目类别:
Request to Transfer R01GM105707-03 Novel regulatory mechanisms of Drosophila Pumilio and Nanos
请求转让 R01GM105707-03 果蝇 Pumilio 和 Nanos 的新颖调控机制
- 批准号:
9225476 - 财政年份:2013
- 资助金额:
$ 37.97万 - 项目类别:
Request to Transfer R01GM105707-03 Novel regulatory mechanisms of Drosophila Pumilio and Nanos
请求转让 R01GM105707-03 果蝇 Pumilio 和 Nanos 的新颖调控机制
- 批准号:
9320859 - 财政年份:2013
- 资助金额:
$ 37.97万 - 项目类别:
Mechanisms of 3'UTR Control: Yeast PUF Proteins
3UTR 控制机制:酵母 PUF 蛋白
- 批准号:
6703657 - 财政年份:2003
- 资助金额:
$ 37.97万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Biochemical characterization of an inflammation related protein, mTOC (Celastramycin binding protein)
炎症相关蛋白 mTOC(西拉霉素结合蛋白)的生化特征
- 批准号:
17K07346 - 财政年份:2017
- 资助金额:
$ 37.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterization of the impact of Arginine Methylation of RNA Binding Proteins on Their Biochemical
RNA 结合蛋白精氨酸甲基化对其生化影响的表征
- 批准号:
511321-2017 - 财政年份:2017
- 资助金额:
$ 37.97万 - 项目类别:
University Undergraduate Student Research Awards
Biochemical & Genetic Analysis of Low Complexity Domains in RNA-binding protein biology
生化
- 批准号:
9335978 - 财政年份:2016
- 资助金额:
$ 37.97万 - 项目类别:
Biochemical & Genetic Analysis of Low Complexity Domains in RNA-binding protein biology
生化
- 批准号:
9158657 - 财政年份:2016
- 资助金额:
$ 37.97万 - 项目类别:
EAGER: Biochemical Mechanism of Oomycete RXLR Effector Binding to PI3P
EAGER:卵菌 RXLR 效应子与 PI3P 结合的生化机制
- 批准号:
1449122 - 财政年份:2014
- 资助金额:
$ 37.97万 - 项目类别:
Standard Grant
Biochemical analysis of plant calcium-binding proteins
植物钙结合蛋白的生化分析
- 批准号:
448832-2013 - 财政年份:2013
- 资助金额:
$ 37.97万 - 项目类别:
University Undergraduate Student Research Awards
Genetic and biochemical analysis of the CaMK family of calmodulin-binding kinases in root and nodule function of Glycine max and Medicago truncatula
钙调蛋白结合激酶 CaMK 家族在大豆和蒺藜苜蓿根和根瘤功能中的遗传和生化分析
- 批准号:
409766-2011 - 财政年份:2013
- 资助金额:
$ 37.97万 - 项目类别:
Postgraduate Scholarships - Doctoral
Genetic and biochemical analysis of the CaMK family of calmodulin-binding kinases in root and nodule function of Glycine max and Medicago truncatula
钙调蛋白结合激酶 CaMK 家族在大豆和蒺藜苜蓿根和根瘤功能中的遗传和生化分析
- 批准号:
409766-2011 - 财政年份:2012
- 资助金额:
$ 37.97万 - 项目类别:
Postgraduate Scholarships - Doctoral
Biochemical, cellular and molecular studies to dissect the contribution of the soluble host carbohydrate binding proteins to HIV-1 pathogenesis
生化、细胞和分子研究,剖析可溶性宿主碳水化合物结合蛋白对 HIV-1 发病机制的贡献
- 批准号:
239201 - 财政年份:2011
- 资助金额:
$ 37.97万 - 项目类别:
Operating Grants
Genetic and biochemical analysis of the CaMK family of calmodulin-binding kinases in root and nodule function of Glycine max and Medicago truncatula
钙调蛋白结合激酶 CaMK 家族在大豆和蒺藜苜蓿根和根瘤功能中的遗传和生化分析
- 批准号:
409766-2011 - 财政年份:2011
- 资助金额:
$ 37.97万 - 项目类别:
Postgraduate Scholarships - Doctoral














{{item.name}}会员




