Nucleoside decoys - metabolic interference in plant defence
核苷诱饵 - 植物防御中的代谢干扰
基本信息
- 批准号:BB/V01627X/1
- 负责人:
- 金额:$ 82.86万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Plant disease resistance (R) genes are widely deployed in plant breeding to help mitigate global crop losses to pests and pathogens which exceed 30%. Unfortunately, resistance is often overcome in the field as pathogens evolve ever sophisticated methods of deploying multi-functional "effectors" - key elements of the pathogens armoury the work collectively to avoid detection and suppress host immunity. Despite having cloned R proteins more than 25 years ago, until 12 months ago we had little idea how these functioned. R proteins come in two flavours, TNLs and CNLs, both containing common key functional domains, the central nucleotide binding (N) domain and carboxyl terminal "leucine rich repeat" (L) region.The recent major research breakthrough showed that the amino terminal TIR, (Toll Interleukin 1) domain of "T"NL disease resistance proteins dimerises to generate a complex capable of cleaving NADH or NADPH, key energy sources for cells. Critically, this "NADase" activity was essential to activate disease resistance. Notably, although animal and bacteria TIR domains have similar enzymatic activities, the products appear to differ. Plants and bacteria produce a compound called v-cADPR (variant cyclic ADP Ribose).For a number of years we have studied the metabolic transition from defence to disease, specifically looking at how the bacterial plant pathogen Pseudomonas syringae overcomes host defences. The most exciting finding of comprehensive untargeted metabolite profiling of infected tissue was the identification of a totally novel molecule that accumulated rapidly in leaves that were infected with Pseudomonas that was going to cause disease but not a non-disease causing mutant. Remarkably, we have recently confirmed that this molecule, which we call "540" based on its molecular mass, is of identical molecular mass to v-cADPR formed by activated TNL disease resistance proteins. Critically, it has a different retention time, as also does the bacterial TIR produced v-cADPR suggesting some very subtle structural variations probably confer quite different specificities. To date, it is unclear whether either the TNL produced plant or bacterial v-cADPR have any biological activity. Importantly, we had previously published two key pieces of evidence. First, disease causing bacteria, but not disarmed bacteria induce a very specific locus of 6 truncated TNL genes (tTNs). This is at first counterintuitive. Why induce R genes?Secondly, we know disease causing bacteria rapidly suppress a defense response - called a reactive oxygen burst - in the chloroplast. This is necessary for disease progression. A consequence of this is elevated NADP+ - an NADase substrate. These are really rapid events, occurring before TNL proteins are activated.Putting this evidence together; the rapid accumulation of 540 co-incident with suppression of the oxidative burst and induction of the tTNs, we theorise that bacterial effectors both suppress the oxidative burst and simultaneously induce the tTNs to mop up accumulating NADP+, which would otherwise activate TNLs. We also cannot rule out the tTNs can also bind to, and interfere with, functional TNL TIR domains preventing activation.Our previous work characterised 540 as a highly labile "cyclic phosphoriboside". In collaboration with an Australian group we elucidated the structure of a prokaryotic v-cADPR, which is subtly different from 540. We have recently developed a method to stabilize 540 and will determine the NMR structure and collaborate on the plant v-cADPR structure with US researchers.Concomitantly, our work programme will fully characterise the tTNs using genetics, gene-editing, biochemistry and structural approaches. Finally we will determine the dynamics of NAD/P accumulation/loss during disease and defence development using state-of-the-art genetically encoded reporters. This multidisciplinary project benefits from collaborations in Australia, Hong Kong and the USA.
植物抗病(R)基因被广泛应用于植物育种,以帮助减轻全球作物因害虫和病原体造成的损失超过30%。不幸的是,随着病原体进化出部署多功能“效应器”的复杂方法,耐药性往往在该领域被克服--病原体军械库的关键要素共同工作以避免检测和抑制宿主免疫。尽管在25年前就已经克隆了R蛋白,但直到12个月前,我们对这些蛋白的功能还知之甚少。R蛋白有两种类型,TNL和CNL,都含有共同的关键功能结构域,即中心的核苷酸结合(N)结构域和羧基末端的“亮氨酸重复”(L)区域。最近的重大研究突破表明,“T“NL抗病蛋白的氨基末端TIR(Toll Interleukin 1)结构域二聚化,产生能够切割细胞关键能量来源NADH或NADPH的复合物。重要的是,这种“NADase”活性对于激活抗病性至关重要。值得注意的是,虽然动物和细菌TIR结构域具有相似的酶活性,但产物似乎不同。植物和细菌产生一种称为v-cADPR(变异环ADP核糖)的化合物。多年来,我们一直在研究从防御到疾病的代谢转变,特别是研究细菌性植物病原体假单胞菌如何克服宿主防御。对受感染组织进行全面的非靶向代谢物分析的最令人兴奋的发现是鉴定出一种全新的分子,该分子在感染假单胞菌的叶片中迅速积累,该假单胞菌将引起疾病,但不是非致病突变体。值得注意的是,我们最近已经证实,这种分子,我们基于其分子量称之为“540”,与由活化的TNL抗病蛋白形成的v-cADPR具有相同的分子量。重要的是,它具有不同的保留时间,细菌TIR产生的v-cADPR也是如此,这表明一些非常细微的结构变化可能赋予完全不同的特异性。到目前为止,还不清楚TNL产生的植物或细菌v-cADPR是否具有任何生物活性。重要的是,我们之前已经公布了两个关键证据。首先,致病细菌,但不是解除武装的细菌诱导一个非常特定的基因座6截短的TNL基因(tTN)。这在一开始是违反直觉的。为什么诱导R基因?其次,我们知道致病细菌迅速抑制叶绿体中的防御反应-称为活性氧爆发。这是疾病进展所必需的。其结果是NADP+ -一种NAD酶底物升高。这些都是非常快速的事件,发生在TNL蛋白被激活之前。把这些证据放在一起; 540的快速积累与氧化爆发的抑制和tTN的诱导同时发生,我们推测细菌效应器既抑制氧化爆发,又同时诱导tTN清除积累的NADP+,否则会激活TNL。我们也不能排除tTN也可以结合并干扰功能性TNL TIR结构域,从而阻止其活化。在与一个澳大利亚小组的合作中,我们阐明了原核v-cADPR的结构,它与540有细微的不同。我们最近开发了一种稳定540的方法,并将确定NMR结构,并与美国研究人员合作研究植物v-cADPR结构。同时,我们的工作计划将使用遗传学,基因编辑,生物化学和结构方法全面验证tTN。最后,我们将确定NAD/P积累/损失的动态疾病和国防发展使用国家的最先进的基因编码的报告。这个多学科项目得益于澳大利亚、香港和美国的合作。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic changes of the Prf/Pto tomato resistance complex following effector recognition.
- DOI:10.1038/s41467-023-38103-6
- 发表时间:2023-05-04
- 期刊:
- 影响因子:16.6
- 作者:Sheikh, Arsheed H.;Zacharia, Iosif;Pardal, Alonso J.;Dominguez-Ferreras, Ana;Sueldo, Daniela J.;Kim, Jung-Gun;Balmuth, Alexi;Gutierrez, Jose R.;Conlan, Brendon F.;Ullah, Najeeb;Nippe, Olivia M.;Girija, Anil M.;Wu, Chih-Hang;Sessa, Guido;Jones, Alexandra M. E.;Grant, Murray R.;Gifford, Miriam L.;Mudgett, Mary Beth;Rathjen, John P.;Ntoukakis, Vardis
- 通讯作者:Ntoukakis, Vardis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Murray Grant其他文献
Communal weeding
- DOI:
10.1186/gb-2000-1-6-reports4024 - 发表时间:
2000-01-01 - 期刊:
- 影响因子:9.400
- 作者:
Murray Grant;Steve Smith - 通讯作者:
Steve Smith
How clumpy is my image?
我的图像有多块状?
- DOI:
10.1007/s00500-014-1303-z - 发表时间:
2014 - 期刊:
- 影响因子:4.1
- 作者:
Hugo Hutt;R. Everson;Murray Grant;John Love;George R. Littlejohn - 通讯作者:
George R. Littlejohn
NAD(H) and NADP(H) in plants and mammals
植物和哺乳动物中的 NAD(H) 和 NADP(H)
- DOI:
10.1016/j.molp.2025.05.004 - 发表时间:
2025-06-02 - 期刊:
- 影响因子:24.100
- 作者:
Danying Lu;Murray Grant;Boon Leong Lim - 通讯作者:
Boon Leong Lim
Development of a lateral flow device for in‐field detection and evaluation of PCR‐based diagnostic methods for Xanthomonas campestris pv. musacearum, the causal agent of banana xanthomonas wilt
开发用于现场检测和评估香蕉黄单胞菌枯萎病病原菌黄单胞菌诊断方法的侧流装置
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:2.7
- 作者:
J. Hodgetts;G. Karamura;G. Karamura;G. Johnson;J. Hall;K. Perkins;F. Beed;V. Nakato;Murray Grant;D. Studholme;Neil Boonham;Julian Smith - 通讯作者:
Julian Smith
Finding the functional gems in plant genomes
- DOI:
10.1186/gb-2003-4-12-350 - 发表时间:
2003-01-01 - 期刊:
- 影响因子:9.400
- 作者:
Alexandra M Jones;Murray Grant - 通讯作者:
Murray Grant
Murray Grant的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Murray Grant', 18)}}的其他基金
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
- 批准号:
BB/X013049/1 - 财政年份:2023
- 资助金额:
$ 82.86万 - 项目类别:
Research Grant
Hong Kong Partnering Award: Next generation genetically encoded sensors to reveal primary energy metabolism in plant immune responses.
香港合作奖:下一代基因编码传感器揭示植物免疫反应中的初级能量代谢。
- 批准号:
BB/W018748/1 - 财政年份:2022
- 资助金额:
$ 82.86万 - 项目类别:
Research Grant
Xanthomonas plant diseases: mitigating existing, emerging and future threats to UK agriculture
黄单胞菌植物病害:减轻英国农业现有、新出现和未来的威胁
- 批准号:
BB/T010924/1 - 财政年份:2020
- 资助金额:
$ 82.86万 - 项目类别:
Research Grant
China Partnering Award: Does chloroplast reactive oxygen underpin plant disease resistance?
中国合作奖:叶绿体活性氧是否支持植物抗病?
- 批准号:
BB/S020764/1 - 财政年份:2019
- 资助金额:
$ 82.86万 - 项目类别:
Research Grant
Retaining the Ashes: The potential for ash populations to be restored following the dieback epidemic
保留灰烬:枯死流行后灰烬数量恢复的潜力
- 批准号:
BB/R018944/1 - 财政年份:2018
- 资助金额:
$ 82.86万 - 项目类别:
Research Grant
The role of the chloroplast in activation of systemic immunity
叶绿体在激活全身免疫中的作用
- 批准号:
BB/R021457/1 - 财政年份:2018
- 资助金额:
$ 82.86万 - 项目类别:
Research Grant
Understanding the mechanism of chloroplast immunity.
了解叶绿体免疫机制。
- 批准号:
BB/P002560/1 - 财政年份:2017
- 资助金额:
$ 82.86万 - 项目类别:
Research Grant
Towards protecting the UK landscape; a novel method to screen for resistance to ash dieback while mitigating herbivory tradeoffs.
保护英国景观;
- 批准号:
BB/N021452/1 - 财政年份:2016
- 资助金额:
$ 82.86万 - 项目类别:
Research Grant
Modelling hormonal crosstalk - commonalities between bacterial and fungal resistance and susceptibility networks.
模拟激素串扰 - 细菌和真菌耐药性和易感性网络之间的共性。
- 批准号:
BB/K005340/1 - 财政年份:2012
- 资助金额:
$ 82.86万 - 项目类别:
Research Grant
Exploiting the growth promotion and induced resistance properties of Trichoderma hamatum for improved crop productivity.
利用钩状木霉的生长促进和诱导抗性特性来提高作物生产力。
- 批准号:
BB/I014691/1 - 财政年份:2011
- 资助金额:
$ 82.86万 - 项目类别:
Research Grant
相似海外基金
COVID-19 Variant Supplement - Peptide macrocycle decoys against COVID-19 viral spike protein
COVID-19 变异补充剂 - 针对 COVID-19 病毒刺突蛋白的肽大环诱饵
- 批准号:
443199 - 财政年份:2021
- 资助金额:
$ 82.86万 - 项目类别:
Operating Grants
Peptide macrocycle decoys against COVID-19 viral spike protein
针对 COVID-19 病毒刺突蛋白的肽大环诱饵
- 批准号:
429721 - 财政年份:2020
- 资助金额:
$ 82.86万 - 项目类别:
Operating Grants
Nucleoside decoys - a novel pathogen strategy to infect plants
核苷诱饵——一种感染植物的新型病原体策略
- 批准号:
2391797 - 财政年份:2020
- 资助金额:
$ 82.86万 - 项目类别:
Studentship
Schwann cell derived small extracellular vesicles function as TNFa decoys in peripheral nerve injury
雪旺细胞衍生的小细胞外囊泡在周围神经损伤中充当 TNFa 诱饵
- 批准号:
20K22994 - 财政年份:2020
- 资助金额:
$ 82.86万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Natural Diversity and Mutant Analysis of Regulators of Plant Immunity for Rational Design of Immunity Proteins as Decoys
植物免疫调节因子的自然多样性和突变分析,合理设计作为诱饵的免疫蛋白
- 批准号:
1557661 - 财政年份:2016
- 资助金额:
$ 82.86万 - 项目类别:
Standard Grant
The role of bovine colostrum oligosaccharides as pathogenic decoys to reduce neonatal calf gut inflammation and diarrhea
牛初乳寡糖作为致病诱饵减少新生犊牛肠道炎症和腹泻的作用
- 批准号:
496224-2016 - 财政年份:2016
- 资助金额:
$ 82.86万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
EAGER: Engineering Decoys to Detect Pathogen Proteases and Activate Host Resistance
EAGER:设计诱饵来检测病原体蛋白酶并激活宿主抵抗力
- 批准号:
1551452 - 财政年份:2016
- 资助金额:
$ 82.86万 - 项目类别:
Standard Grant
A novel high-throughput functional screen based upon chimeric minimotif decoys
一种基于嵌合小基序诱饵的新型高通量功能筛选
- 批准号:
8924720 - 财政年份:2015
- 资助金额:
$ 82.86万 - 项目类别:
exSSSRs-Fc fusion decoys prevent S100A8/A9-mediated cancer metastasis.
exSSSRs-Fc 融合诱饵可预防 S100A8/A9 介导的癌症转移。
- 批准号:
15K14382 - 财政年份:2015
- 资助金额:
$ 82.86万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
A novel high-throughput functional screen based upon chimeric minimotif decoys
一种基于嵌合小基序诱饵的新型高通量功能筛选
- 批准号:
9094425 - 财政年份:2015
- 资助金额:
$ 82.86万 - 项目类别: