Understanding the mechanism of chloroplast immunity.

了解叶绿体免疫机制。

基本信息

  • 批准号:
    BB/P002560/1
  • 负责人:
  • 金额:
    $ 65万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

One of the "big challenges" for our next generation is to ensure global food security. This can be achieved through a combination of increasing productivity and selecting for plants which respond robustly to changing environmental conditions. Increasing productivity is challenging without bespoke local breeding solutions and this is reflected in the ever decreasing average annual crop yields achieved through conventional breeding. Crop losses due to biotic stress contribute disproportionately to yield losses, often around one quarter but in extreme cases in excess of three quarters of a crop. Thus developing novel approaches to restricting pathogen infections of crops and consequently yields must be a primary objective if we are to realistically ensure we can feed the estimated 9 billion people by 2050. We have recently shown that the chloroplast is a key battlefield in determining the eventual outcome of plant-microbe interactions. Aside from its ability to fix carbon, chloroplasts play a central role in integrating multiple environmental stimuli and sensing the metabolic status of the plant. As a principal source of reactive oxygen species, the site of a significant amount of primary carbon metabolism and synthesis of the majority of hormone metabolic precursors, the chloroplast represents a prime target for pathogen manipulation. Our pioneering work has shown that the chloroplast responds to recognition of conserved pathogen motifs (non-self) by generating a burst of reactive oxygen species (ROS) that we believe act as a defensive signal. It is not surprising therefore that successful pathogens deliver proteins and small molecules known as effectors - to intervene in this process. Our data indicate that pathogens, both bacterial and fungal, achieve this by reconfiguring expression of nuclear encoded plant genes and some effectors actually even enter the chloroplast. These effectors stop the ROS burst by suppressing photosynthesis - arguably one of the most important reactions on this planet - but we don't know how. What we do know is that effectors increase the production of a hormone called abscisic acid (ABA), and stopping ABA production makes the plant more resistant. Conversely, adding ABA stops the chloroplast ROS burst, enabling pathogen growth. Here our primary objective is to understand how recognition of non-self activates chloroplast immunity and how pathogen effector proteins have evolved to suppress this immunity. One major objective is to undertake detailed studies of the biophysical changes in the chloroplast during treatments that cause disease or induce defence. We will look at the changes in proteins within chloroplasts during these treatments and changes in the small molecules as well. Merging these data we will predict proteins that contribute to these processes. To access their role in defence we will change their abundance and looking at how those plants behave to pathogens. We will also work out how many effectors, and the functional nature of those effectors, enter the chloroplast. A second major strand of work is to visualise the dynamics of ROS production in the chloroplast and the nucleus during the transition from healthy to diseased plants. We are also interested in how organelles within the cell behave during disease and defence promoting challenges. To visualise this we have labelled different organelles in the cell with fluorescent markers and we will use these to monitor their behaviours during the infection process.As chloroplast immunity appears conserved, our longer term goal is to use the knowledge gained from these studies in novel re-engineering or intervention strategies that will provide plants with broad spectrum resistance against pathogens.
我们下一代面临的“重大挑战”之一是确保全球粮食安全。这可以通过提高生产力和选择对变化的环境条件反应强烈的植物相结合来实现。如果没有定制的本地育种解决方案,提高生产力是一项挑战,这反映在通过传统育种实现的平均年作物产量不断下降。生物胁迫造成的作物损失对产量损失的贡献不成比例,通常约占作物产量损失的四分之一,但在极端情况下超过四分之三。因此,如果我们要切实确保到2050年能够养活估计的90亿人口,就必须发展新的方法来限制作物的病原体感染,从而提高产量。我们最近的研究表明,叶绿体是决定植物与微生物相互作用最终结果的关键战场。除了固定碳的能力,叶绿体在整合多种环境刺激和感知植物代谢状态方面发挥着核心作用。叶绿体作为活性氧的主要来源,是大量初级碳代谢和大多数激素代谢前体合成的场所,是病原体操纵的主要目标。我们的开创性工作表明,叶绿体通过产生活性氧(ROS)的爆发来响应保守病原体基序(非自我)的识别,我们认为这是一种防御信号。因此,成功的病原体传递蛋白质和被称为效应器的小分子来干预这一过程并不奇怪。我们的数据表明,细菌和真菌病原体通过重新配置核编码植物基因的表达来实现这一目标,一些效应物甚至进入叶绿体。这些效应物通过抑制光合作用(可以说是地球上最重要的反应之一)来阻止活性氧的爆发,但我们不知道是如何做到的。我们所知道的是,效应物会增加一种叫做脱落酸(ABA)的激素的产生,而停止ABA的产生会使植物更具抗性。相反,添加ABA阻止叶绿体ROS爆发,使病原体生长。在这里,我们的主要目标是了解非自体识别如何激活叶绿体免疫,以及病原体效应蛋白如何进化以抑制这种免疫。一个主要目标是在引起疾病或诱导防御的治疗过程中对叶绿体的生物物理变化进行详细研究。我们将观察在这些处理过程中叶绿体内蛋白质的变化以及小分子的变化。结合这些数据,我们将预测有助于这些过程的蛋白质。为了了解它们在防御中的作用,我们将改变它们的数量,并观察这些植物对病原体的反应。我们还会计算出有多少效应器,以及这些效应器的功能性质,进入叶绿体。第二个主要工作是可视化从健康植物到患病植物过渡期间叶绿体和细胞核中ROS产生的动态。我们也对细胞内的细胞器在疾病和防御促进挑战中的行为感兴趣。为了可视化,我们用荧光标记标记了细胞中的不同细胞器,我们将使用这些标记来监测它们在感染过程中的行为。由于叶绿体免疫似乎是保守的,我们的长期目标是利用从这些研究中获得的知识进行新的重组或干预策略,从而为植物提供抗病原体的广谱抗性。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Branch-recombinant Gaussian processes for analysis of perturbations in biological time series.
  • DOI:
    10.1093/bioinformatics/bty603
  • 发表时间:
    2018-09-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Penfold CA;Sybirna A;Reid JE;Huang Y;Wernisch L;Ghahramani Z;Grant M;Surani MA
  • 通讯作者:
    Surani MA
Rapid local and systemic jasmonate signalling drives initiation and establishment of plant systemic immunity
快速的局部和全身茉莉酸信号传导驱动植物全身免疫的启动和建立
  • DOI:
    10.1101/2023.05.22.541689
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gaikwad T
  • 通讯作者:
    Gaikwad T
Chloroplasts play a central role in facilitating MAMP-triggered immunity, pathogen suppression of immunity and crosstalk with abiotic stress.
  • DOI:
    10.1111/pce.14408
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Breen, Susan;Hussain, Rana;Breeze, Emily;Brown, Hannah;Alzwiy, Ibrahim;Abdelsayed, Sara;Gaikwad, Trupti;Grant, Murray
  • 通讯作者:
    Grant, Murray
The chloroplast plays a central role in facilitating MAMP-Triggered Immunity, pathogen suppression of immunity and crosstalk with abiotic stress.
叶绿体在促进 MAMP 触发的免疫、病原体免疫抑制以及与非生物胁迫的串扰方面发挥着核心作用。
  • DOI:
    10.22541/au.165407049.94925720/v1
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Breen S
  • 通讯作者:
    Breen S
Updates of the In-Gel Digestion Method for Protein Analysis by Mass Spectrometry.
通过质谱法进行蛋白质分析的凝胶内消化方法的更新。
  • DOI:
    10.1002/pmic.201800236
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Goodman JK;Zampronio CG;Jones AME;Hernandez-Fernaud JR
  • 通讯作者:
    Hernandez-Fernaud JR
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Murray Grant其他文献

Communal weeding
  • DOI:
    10.1186/gb-2000-1-6-reports4024
  • 发表时间:
    2000-01-01
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Murray Grant;Steve Smith
  • 通讯作者:
    Steve Smith
How clumpy is my image?
我的图像有多块状?
  • DOI:
    10.1007/s00500-014-1303-z
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Hugo Hutt;R. Everson;Murray Grant;John Love;George R. Littlejohn
  • 通讯作者:
    George R. Littlejohn
NAD(H) and NADP(H) in plants and mammals
植物和哺乳动物中的 NAD(H) 和 NADP(H)
  • DOI:
    10.1016/j.molp.2025.05.004
  • 发表时间:
    2025-06-02
  • 期刊:
  • 影响因子:
    24.100
  • 作者:
    Danying Lu;Murray Grant;Boon Leong Lim
  • 通讯作者:
    Boon Leong Lim
Development of a lateral flow device for in‐field detection and evaluation of PCR‐based diagnostic methods for Xanthomonas campestris pv. musacearum, the causal agent of banana xanthomonas wilt
开发用于现场检测和评估香蕉黄单胞菌枯萎病病原菌黄单胞菌诊断方法的侧流装置
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    J. Hodgetts;G. Karamura;G. Karamura;G. Johnson;J. Hall;K. Perkins;F. Beed;V. Nakato;Murray Grant;D. Studholme;Neil Boonham;Julian Smith
  • 通讯作者:
    Julian Smith
Finding the functional gems in plant genomes
  • DOI:
    10.1186/gb-2003-4-12-350
  • 发表时间:
    2003-01-01
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Alexandra M Jones;Murray Grant
  • 通讯作者:
    Murray Grant

Murray Grant的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Murray Grant', 18)}}的其他基金

Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
  • 批准号:
    BB/X013049/1
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Research Grant
Hong Kong Partnering Award: Next generation genetically encoded sensors to reveal primary energy metabolism in plant immune responses.
香港合作奖:下一代基因编码传感器揭示植物免疫反应中的初级能量代谢。
  • 批准号:
    BB/W018748/1
  • 财政年份:
    2022
  • 资助金额:
    $ 65万
  • 项目类别:
    Research Grant
Nucleoside decoys - metabolic interference in plant defence
核苷诱饵 - 植物防御中的代谢干扰
  • 批准号:
    BB/V01627X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 65万
  • 项目类别:
    Research Grant
Xanthomonas plant diseases: mitigating existing, emerging and future threats to UK agriculture
黄单胞菌植物病害:减轻英国农业现有、新出现和未来的威胁
  • 批准号:
    BB/T010924/1
  • 财政年份:
    2020
  • 资助金额:
    $ 65万
  • 项目类别:
    Research Grant
China Partnering Award: Does chloroplast reactive oxygen underpin plant disease resistance?
中国合作奖:叶绿体活性氧是否支持植物抗病?
  • 批准号:
    BB/S020764/1
  • 财政年份:
    2019
  • 资助金额:
    $ 65万
  • 项目类别:
    Research Grant
Retaining the Ashes: The potential for ash populations to be restored following the dieback epidemic
保留灰烬:枯死流行后灰烬数量恢复的潜力
  • 批准号:
    BB/R018944/1
  • 财政年份:
    2018
  • 资助金额:
    $ 65万
  • 项目类别:
    Research Grant
The role of the chloroplast in activation of systemic immunity
叶绿体在激活全身免疫中的作用
  • 批准号:
    BB/R021457/1
  • 财政年份:
    2018
  • 资助金额:
    $ 65万
  • 项目类别:
    Research Grant
Towards protecting the UK landscape; a novel method to screen for resistance to ash dieback while mitigating herbivory tradeoffs.
保护英国景观;
  • 批准号:
    BB/N021452/1
  • 财政年份:
    2016
  • 资助金额:
    $ 65万
  • 项目类别:
    Research Grant
Modelling hormonal crosstalk - commonalities between bacterial and fungal resistance and susceptibility networks.
模拟激素串扰 - 细菌和真菌耐药性和易感性网络之间的共性。
  • 批准号:
    BB/K005340/1
  • 财政年份:
    2012
  • 资助金额:
    $ 65万
  • 项目类别:
    Research Grant
Exploiting the growth promotion and induced resistance properties of Trichoderma hamatum for improved crop productivity.
利用钩状木霉的生长促进和诱导抗性特性来提高作物生产力。
  • 批准号:
    BB/I014691/1
  • 财政年份:
    2011
  • 资助金额:
    $ 65万
  • 项目类别:
    Research Grant

相似国自然基金

CBP/p300-HADH轴在基础胰岛素分泌调节中的作用和机制研究
  • 批准号:
    82370798
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
糖尿病ED中成纤维细胞衰老调控内皮细胞线粒体稳态失衡的机制研究
  • 批准号:
    82371634
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
TIPE2调控巨噬细胞M2极化改善睑板腺功能障碍的作用机制研究
  • 批准号:
    82371028
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
PRNP调控巨噬细胞M2极化并减弱吞噬功能促进子宫内膜异位症进展的机制研究
  • 批准号:
    82371651
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
生物钟核受体Rev-erbα在缺血性卒中神经元能量代谢中的改善作用及机制研究
  • 批准号:
    82371332
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
慢性炎症诱发骨丢失的机制及外泌体靶向治疗策略研究
  • 批准号:
    82370889
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
5'-tRF-GlyGCC通过SRSF1调控RNA可变剪切促三阴性乳腺癌作用机制及干预策略
  • 批准号:
    82372743
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
超声驱动压电效应激活门控离子通道促眼眶膜内成骨的作用及机制研究
  • 批准号:
    82371103
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
骨髓ISG+NAMPT+中性粒细胞介导抗磷脂综合征B细胞异常活化的机制研究
  • 批准号:
    82371799
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
  • 批准号:
    82371616
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

Molecular architecture and mechanism of the chloroplast's beta-barrel assembly machinery (ChlAM)
叶绿体β-桶组装机器(ChlAM)的分子结构和机制
  • 批准号:
    EP/Y036158/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Research Grant
Elucidation on a transcriptional and post-transcriptional regulation mechanism of the diurnal expression rhythm of chloroplast genes.
阐明叶绿体基因昼夜表达节律的转录和转录后调控机制。
  • 批准号:
    23K05146
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exploration of chloroplast DNA repair mechanism with the cancer therapy
叶绿体DNA修复机制与癌症治疗的探索
  • 批准号:
    22K19329
  • 财政年份:
    2022
  • 资助金额:
    $ 65万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Elucidation of the regulatory mechanism of chloroplast nucleoid with DNA supercoils as the core
以DNA超螺旋为核心阐明叶绿体核仁调控机制
  • 批准号:
    21H02504
  • 财政年份:
    2021
  • 资助金额:
    $ 65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Chloroplast immunity a neglected mechanism to enhance sustainable agriculture
叶绿体免疫是增强可持续农业的被忽视的机制
  • 批准号:
    2590896
  • 财政年份:
    2021
  • 资助金额:
    $ 65万
  • 项目类别:
    Studentship
Temperature-dependent chloroplast movement and its induction mechanism
温度依赖性叶绿体运动及其诱导机制
  • 批准号:
    20K15509
  • 财政年份:
    2020
  • 资助金额:
    $ 65万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Novel solar UVB adaptation strategic mechanism in plants, which have not function of CPD photoreactivation in chloroplast.
植物新的太阳UVB适应策略机制,不具有叶绿体CPD光活化功能。
  • 批准号:
    20H04330
  • 财政年份:
    2020
  • 资助金额:
    $ 65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Studies on the induction mechanism and physiological role of chloroplast aggregative movements commonly observed in mesophyll cells of C4 plants
C4植物叶肉细胞叶绿体聚集运动诱导机制及生理作用研究
  • 批准号:
    20H02966
  • 财政年份:
    2020
  • 资助金额:
    $ 65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: How SFR2 allows chloroplast envelope membranes to survive freezing, from initial signal to molecular mechanism.
职业生涯:从最初的信号到分子机制,SFR2 如何使叶绿体包膜在冷冻条件下存活。
  • 批准号:
    1845175
  • 财政年份:
    2019
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
Mechanism of chloroplast division checkpoint release in unicellular algae and generality
单细胞藻类叶绿体分裂检查点释放机制及一般性
  • 批准号:
    17K18091
  • 财政年份:
    2017
  • 资助金额:
    $ 65万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了