Developing better modelling inference tools to inform disease control for bovine Tuberculosis using epidemiological and pathogen genetic information.
开发更好的建模推理工具,利用流行病学和病原体遗传信息为牛结核病的疾病控制提供信息。
基本信息
- 批准号:BB/W007290/1
- 负责人:
- 金额:$ 48万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Quantitative models are useful tools for projecting the outcome of disease control options, and therefore choosing between them. The epidemic of bovine Tuberculosis (TB) has generated a wealth of data which can be exploited to generate detailed predictive process models and evaluate their performance. Recently, the exploitation of pathogen sequence data has had a transformative impact on our understanding of epidemic diseases. In the context of mathematical modelling, the detailed representation of transmission pathways can greatly improve our ability to infer the values of model parameters that allows the models to recreate key characteristics of observed epidemics. Many of these methods have been developed for of rapidly evolving viruses with consistent evolutionary clocks, infecting a single host species. However, there remains a need to develop more general methods to infer transmission pathways in multi-host systems. A critical issue is that observations on all relevant host populations are often unbalanced, with data on one or more important hosts difficult to obtain. Recently we have used a simulation-based approach for considering the transmission of TB in Irish cattle and badgers, and identifies important epidemiological properties, despite the absence of any observations on the badger populations or infection in the badgers however these approaches need to be validated across different scenarios, and tested in scenarios where data across both host species are available. Further, while our approximate approach has demonstrated the ability to select between different badger contribution scenarios, the approach remains to be validated to make it useful across different scenarios. In parallel, we have also developed likelihood-based approaches for the simpler problem of FMD transmission in a single host system, as well as for the epidemiological analysis of an intensively studied badger epidemic. In this project, we shall generate a suite of scenarios (endemic vs. epidemic, persistent in each population, only one population, or only in the two together) and different contact network relationships, to identify signals for transmission across the different scenarios, and propose new metrics for solving the underlying problems. We shall test these outcomes, we shall use extant datasets for M. bovis transmission with balanced cattle and badger information and very different transmission patterns. We shall consider two critical aspects of this process - first, by comparing the approximate and full likelihood methods we develop, we shall ask if the metrics in the approximate method are adequate for characterising the epidemic (sufficiently to the overall objective of modelling control) and second, if the model adequate for describing the processes relevant to choosing between disease control options. In the 1st part, we shall compare model outputs using the existing fitting approaches to the real data on disease outbreaks, and use this to develop recommendations of more relevant metrics (and using these in model fitting). In the 2nd, we shall propose up to three different model processes and structures based on epidemiological insight (e.g. the potential role of supershedders, or variation in the ability of the standard test to detect infected cattle), use these to generate synthetic datasets which will be fitted to the baseline model using the different metrics proposed in part one, and then demonstrate the relative ability of the model fitted to these different metrics to fit the synthetic data and predict to outcome of control.Therefore we shall both developing methods to consider in detail generalisable multi-host phylodynamic models, & address key issues for the management of an important disease problem, thereby facilitating more tailored approaches to control of bTB and other multi-host diseases.
定量模型是预测疾病控制方案的结果,从而在它们之间进行选择的有用工具。牛结核病(TB)的流行产生了丰富的数据,可用于生成详细的预测过程模型并评估其性能。最近,病原体序列数据的开发对我们对流行病的理解产生了变革性的影响。在数学建模的背景下,传播途径的详细表示可以大大提高我们推断模型参数值的能力,从而使模型能够重现所观察到的流行病的关键特征。其中许多方法是针对具有一致进化时钟的快速进化病毒而开发的,这些病毒感染单一宿主物种。然而,仍然需要开发更通用的方法来推断多宿主系统中的传播途径。一个关键问题是,对所有相关宿主种群的观察结果往往不平衡,难以获得一个或多个重要宿主的数据。最近,我们使用了一种基于模拟的方法来考虑爱尔兰牛和獾之间的结核病传播,并确定了重要的流行病学特性,尽管没有对獾种群或獾感染进行任何观察,但这些方法需要在不同的情况下进行验证,并在两种宿主物种的数据可用的情况下进行测试。此外,虽然我们的近似方法已经证明了在不同的獾贡献场景之间进行选择的能力,但该方法仍有待验证,以使其在不同的场景中有用。与此同时,我们还开发了基于可能性的方法来解决单一宿主系统中口蹄疫传播的简单问题,以及对深入研究的獾流行病进行流行病学分析。在这个项目中,我们将生成一套场景(地方性vs.流行病,在每个人群中持续存在,只有一个人群,或只在两个人群中同时存在)和不同的接触网络关系,以确定在不同场景中传播的信号,并提出解决潜在问题的新指标。我们将测试这些结果,我们将使用牛分枝杆菌传播的现有数据集,其中包含平衡的牛和獾信息以及非常不同的传播模式。我们将考虑这一过程的两个关键方面——首先,通过比较我们开发的近似和全似然方法,我们将询问近似方法中的度量是否足以描述流行病的特征(足以达到建模控制的总体目标),其次,模型是否足以描述与在疾病控制方案之间进行选择有关的过程。在第一部分中,我们将比较使用现有拟合方法的模型输出与疾病暴发的实际数据,并以此制定更相关指标的建议(并在模型拟合中使用这些指标)。在第二部分中,我们将根据流行病学的见解(例如,超级脱毛者的潜在作用,或标准测试检测受感染牛的能力的变化)提出多达三种不同的模型过程和结构,使用这些来生成合成数据集,这些数据集将使用第一部分中提出的不同度量标准拟合到基线模型中。然后证明了该模型对这些不同指标拟合的相对能力,以拟合综合数据并预测控制结果。因此,我们将开发方法来详细考虑可推广的多宿主系统动力学模型,并解决重要疾病问题管理的关键问题,从而促进更有针对性的方法来控制bTB和其他多宿主疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rowland Kao其他文献
Rowland Kao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rowland Kao', 18)}}的其他基金
Flu Trailmap (Transmission and risk of avian influenza: learning more to advance preparedness)
流感路线图(禽流感的传播和风险:了解更多信息以做好准备)
- 批准号:
BB/Y007352/1 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Research Grant
Real-time monitoring and predictive modelling of the impact of human behaviour and vaccine characteristics on COVID-19 vaccination in Scotland
人类行为和疫苗特征对苏格兰 COVID-19 疫苗接种影响的实时监测和预测建模
- 批准号:
ES/W001489/1 - 财政年份:2021
- 资助金额:
$ 48万 - 项目类别:
Research Grant
US-UK Collab: Mycobacterial Transmission Dynamics in Agricultural Systems: Integrating Phylogenetics, Epidemiology, Ecology, and Economics
美英合作:农业系统中的分枝杆菌传播动力学:整合系统发育学、流行病学、生态学和经济学
- 批准号:
BB/M01262X/2 - 财政年份:2017
- 资助金额:
$ 48万 - 项目类别:
Research Grant
Joint estimation of epidemiological and genetic processes for Mycobacterium bovis transmission dynamics in cattle and badgers
联合评估牛和獾中牛分枝杆菌传播动态的流行病学和遗传过程
- 批准号:
BB/L010569/2 - 财政年份:2017
- 资助金额:
$ 48万 - 项目类别:
Research Grant
Bilateral BBSRC-SFI: Tackling a multi-host pathogen problem - phylodynamic analyses of the epidemiology of M. bovis in Britain and Ireland
双边 BBSRC-SFI:解决多宿主病原体问题 - 英国和爱尔兰牛分枝杆菌流行病学的系统动力学分析
- 批准号:
BB/P010598/1 - 财政年份:2017
- 资助金额:
$ 48万 - 项目类别:
Research Grant
US-UK Collab: Mycobacterial Transmission Dynamics in Agricultural Systems: Integrating Phylogenetics, Epidemiology, Ecology, and Economics
美英合作:农业系统中的分枝杆菌传播动力学:整合系统发育学、流行病学、生态学和经济学
- 批准号:
BB/M01262X/1 - 财政年份:2014
- 资助金额:
$ 48万 - 项目类别:
Research Grant
Joint estimation of epidemiological and genetic processes for Mycobacterium bovis transmission dynamics in cattle and badgers
联合评估牛和獾中牛分枝杆菌传播动态的流行病学和遗传过程
- 批准号:
BB/L010569/1 - 财政年份:2014
- 资助金额:
$ 48万 - 项目类别:
Research Grant
相似海外基金
Improving water quality modelling by better understanding solute transport
通过更好地了解溶质迁移来改进水质建模
- 批准号:
DP230100618 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Discovery Projects
Computational Modelling of Parachute Deployment to allow better Optimisation through Parachute Design
降落伞展开的计算模型可通过降落伞设计实现更好的优化
- 批准号:
10062651 - 财政年份:2023
- 资助金额:
$ 48万 - 项目类别:
Collaborative R&D
Individualized Functional Targets for Transcranial Magnetic Stimulation in the Treatment of Major Depressive Disorder: Does Targeting sgACC-DLPFC Connectivity Lead to Better Outcomes?
经颅磁刺激治疗重度抑郁症的个体化功能目标:以 sgACC-DLPFC 连接为目标是否会带来更好的结果?
- 批准号:
474509 - 财政年份:2022
- 资助金额:
$ 48万 - 项目类别:
Studentship Programs
Multi-variate and multi-modal modelling of neuroimaging data to better understand brain ageing
神经影像数据的多变量和多模式建模,以更好地了解大脑衰老
- 批准号:
RGPIN-2020-05448 - 财政年份:2022
- 资助金额:
$ 48万 - 项目类别:
Discovery Grants Program - Individual
Better financial modelling: making the IFS local government finance model available to councils in partnership with CIPFA and the DCN
更好的财务模型:与 CIPFA 和 DCN 合作,向议会提供 IFS 地方政府财务模型
- 批准号:
ES/W011670/1 - 财政年份:2022
- 资助金额:
$ 48万 - 项目类别:
Research Grant
Developing better modelling inference tools to inform disease control for bovine Tuberculosis using epidemiological and pathogen genetic information.
开发更好的建模推理工具,利用流行病学和病原体遗传信息为牛结核病的疾病控制提供信息。
- 批准号:
BB/W007711/1 - 财政年份:2022
- 资助金额:
$ 48万 - 项目类别:
Research Grant
Multi-variate and multi-modal modelling of neuroimaging data to better understand brain ageing
神经影像数据的多变量和多模式建模,以更好地了解大脑衰老
- 批准号:
RGPIN-2020-05448 - 财政年份:2021
- 资助金额:
$ 48万 - 项目类别:
Discovery Grants Program - Individual
Exploring All-Solid-State Batteries using First-Principles Modelling: Effective Computational Strategies towards Better Batteries
使用第一原理建模探索全固态电池:实现更好电池的有效计算策略
- 批准号:
EP/T026138/1 - 财政年份:2020
- 资助金额:
$ 48万 - 项目类别:
Fellowship
Observed streamflow generation changes: better understanding and modelling
观察到的水流生成变化:更好的理解和建模
- 批准号:
LP180100796 - 财政年份:2020
- 资助金额:
$ 48万 - 项目类别:
Linkage Projects
Incorporating HIV testing and recent infection data in incidence trends estimation in sub-Saharan Africa: bridging modelling frameworks for better public health policy
将艾滋病毒检测和近期感染数据纳入撒哈拉以南非洲的发病趋势估计:为更好的公共卫生政策建立桥梁模型框架
- 批准号:
442276 - 财政年份:2020
- 资助金额:
$ 48万 - 项目类别:
Studentship Programs














{{item.name}}会员




