21ENGBIO Reprogramming bacterial cells using whole-cell models

21ENGBIO 使用全细胞模型对细菌细胞进行重编程

基本信息

  • 批准号:
    BB/W012235/1
  • 负责人:
  • 金额:
    $ 12.83万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

The recent availability of increasingly precise genome-editing technologies provides synthetic biologists with the ability to modify cells and organisms at the genome-scale level. In the near future, it will be possible to (re-)engineer entire genomes at will, for example, to build minimal cells which can produce useful compounds (e.g. insulin or biofuels). To guide this process, synthetic biologists usually make use of mathematical models to predict the outcomes of genome engineering and, ultimately, save time and effort of experimental testing. To date, the lack of mathematical models which can represent precisely all functions within a cell is a major bottleneck in developing robust cycles of iterations between design and testing (the so-called "design-build-test-learn cycles") for reengineering living organisms.Our vision is that whole-cell models can revolutionise design-build-test-learn cycles. Whole-cell models are state-of-the-art computational representations of cells, which account for the function of every gene product and dynamics of every molecule over the entire cell lifecycle. Whole-cell models for two bacterial cells (Mycoplasma genitalium and Escherichia coli) have been developed very recently by our international partner in the US, but have never been used, to date, to guide experiments in synthetic biology. This programme will integrate, for the first time, whole-cell model predictions and genome-editing technologies within design-build-test-learn cycles to rationally redesign E. coli bacterial cells for the production of useful compounds. We set up an interdisciplinary team, composed of UK experts in systems and synthetic biology and encompassing the world experts in whole-cell model development and analysis. We are excited to pioneer this adventurous and promising new research programme at the interface of genome engineering, systems and synthetic biology and modern computer science. Outcomes of this research could transform current synthetic biology approaches by significantly reducing experimental costs, accelerating discovery through automation and promoting whole-cell model impact on broad academic and industrial communities.Longer-term, as whole-cell models become available for higher species (e.g. human cells), our approach could be relevant for the rational design of patient-tailored treatments.
最近越来越精确的基因组编辑技术的可用性为合成生物学家提供了在基因组水平上修改细胞和生物体的能力。在不久的将来,人们将有可能随意(重新)设计整个基因组,例如,建立能够产生有用化合物(例如胰岛素或生物燃料)的最小细胞。为了指导这一过程,合成生物学家通常利用数学模型来预测基因组工程的结果,并最终节省实验测试的时间和精力。到目前为止,缺乏数学模型,可以精确地代表所有功能的细胞是一个主要的瓶颈,在开发强大的循环之间的迭代设计和测试(所谓的“设计-构建-测试-学习周期”)再造活的organism. We的愿景是,全细胞模型可以彻底改变设计-构建-测试-学习周期。全细胞模型是细胞的最先进的计算表示,它解释了整个细胞生命周期中每个基因产物的功能和每个分子的动力学。我们在美国的国际合作伙伴最近开发了两种细菌细胞(生殖支原体和大肠杆菌)的全细胞模型,但迄今为止从未用于指导合成生物学实验。该计划将首次将全细胞模型预测和基因组编辑技术整合到设计-构建-测试-学习周期中,以合理地重新设计E。用于生产有用化合物的大肠杆菌细菌细胞。我们建立了一个跨学科团队,由英国系统和合成生物学专家组成,并包括全细胞模型开发和分析方面的世界专家。我们很高兴能够在基因组工程,系统和合成生物学以及现代计算机科学的界面上开创这个冒险和有前途的新研究计划。这项研究的成果可以通过显著降低实验成本、通过自动化加速发现以及促进全细胞模型对广泛的学术和工业界的影响来改变当前的合成生物学方法。从长远来看,随着全细胞模型可用于更高物种(例如人类细胞),我们的方法可能与合理设计患者量身定制的治疗方法相关。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bridging the gap between mechanistic biological models and machine learning surrogates.
  • DOI:
    10.1371/journal.pcbi.1010988
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lucia Marucci其他文献

Lucia Marucci的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lucia Marucci', 18)}}的其他基金

COMBO: CONTROL-BASED BIODESIGN OF MAMMALIAN CELL DYNAMICS
COMBO:基于控制的哺乳动物细胞动力学生物设计
  • 批准号:
    EP/S01876X/1
  • 财政年份:
    2019
  • 资助金额:
    $ 12.83万
  • 项目类别:
    Fellowship
AUTOMATIC CELL FATE ENGINEERING USING MICROFLUIDICS DEVICES
使用微流控设备进行自动细胞命运工程
  • 批准号:
    EP/R041695/1
  • 财政年份:
    2018
  • 资助金额:
    $ 12.83万
  • 项目类别:
    Research Grant
AUTOMATIC CONTROL OF MAMMALIAN GENE EXPRESSION USING A MICROFLUIDIC PLATFORM
使用微流体平台自动控制哺乳动物基因表达
  • 批准号:
    BB/R00529X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 12.83万
  • 项目类别:
    Research Grant
Unravelling the role of beta-catenin in ground state pluripotency
揭示β-连环蛋白在基态多能性中的作用
  • 批准号:
    MR/N021444/1
  • 财政年份:
    2016
  • 资助金额:
    $ 12.83万
  • 项目类别:
    Research Grant

相似海外基金

A blueprint for neutrophil heterogeneity and reprogramming in cancer
癌症中中性粒细胞异质性和重编程的蓝图
  • 批准号:
    10472807
  • 财政年份:
    2022
  • 资助金额:
    $ 12.83万
  • 项目类别:
LEAPS-MPS: Accuracy and the Regulatory Reprogramming of Bacterial Chemosensing
LEAPS-MPS:细菌化学传感的准确性和监管重编程
  • 批准号:
    2137630
  • 财政年份:
    2021
  • 资助金额:
    $ 12.83万
  • 项目类别:
    Standard Grant
Biosynthesis and Reprogramming of Bacterial Organelles
细菌细胞器的生物合成和重编程
  • 批准号:
    2599456
  • 财政年份:
    2021
  • 资助金额:
    $ 12.83万
  • 项目类别:
    Studentship
Investigating the effect of SARS-CoV-2 infection on metabolic reprogramming in lung cancer
研究 SARS-CoV-2 感染对肺癌代谢重编程的影响
  • 批准号:
    10199384
  • 财政年份:
    2020
  • 资助金额:
    $ 12.83万
  • 项目类别:
Epigenetic Reprogramming in HIV-Associated Cardio-Vascular Disease
HIV 相关心血管疾病的表观遗传重编程
  • 批准号:
    9762205
  • 财政年份:
    2018
  • 资助金额:
    $ 12.83万
  • 项目类别:
Mechanisms of Enzymatic Vinyl Isonitrile Formation and Reprogramming of Isonitrilases and Iron/2-Oxoglutarate Desaturases
酶促乙烯基异腈形成的机制以及异腈酶和铁/2-氧戊二酸去饱和酶的重编程
  • 批准号:
    10174950
  • 财政年份:
    2018
  • 资助金额:
    $ 12.83万
  • 项目类别:
Mechanisms of Enzymatic Vinyl Isonitrile Formation and Reprogramming of Isonitrilases and Iron/2-Oxoglutarate Desaturases
酶促乙烯基异腈形成的机制以及异腈酶和铁/2-氧戊二酸去饱和酶的重编程
  • 批准号:
    10402382
  • 财政年份:
    2018
  • 资助金额:
    $ 12.83万
  • 项目类别:
Mechanisms for Stress-Induced Transcriptional Reprogramming via Anti-Adaptors
通过反适配器进行应激诱导转录重编程的机制
  • 批准号:
    9229317
  • 财政年份:
    2017
  • 资助金额:
    $ 12.83万
  • 项目类别:
Reprogramming of Prostate Stromal Cells by Prostate Inflammation
前列腺炎症对前列腺基质细胞的重编程
  • 批准号:
    9098081
  • 财政年份:
    2016
  • 资助金额:
    $ 12.83万
  • 项目类别:
Reprogramming of megakaryocytes and platelets in response to bacterial infection
巨核细胞和血小板针对细菌感染的重新编程
  • 批准号:
    325381593
  • 财政年份:
    2016
  • 资助金额:
    $ 12.83万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了