21ENGBIO Engineering bacterial 'sense and respond' systems to control microbial communities

21ENGBIO 工程细菌“感知和响应”系统来控制微生物群落

基本信息

  • 批准号:
    BB/W012898/1
  • 负责人:
  • 金额:
    $ 12.84万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

In nature, bacteria usually grow together within multi-species communities. Growing in a community has many benefits including protection from invaders, access to extra resources, and the ability to work together to achieve tasks. Based on these benefits, there are many ways that we would like to use communities of engineered bacteria for our benefit. These include applications in human and animal health and nutrition, for example as biomedicines and to help reduce antibiotic usage; in agriculture, for example improving seed and soil health; in biomanufacturing, creating greener bioprocesses; and as solutions to environmental challenges, such as through bioremediation. To safely and reliably use engineered bacterial communities we need them to behave in a predictable way once they are deployed. Unfortunately, we still don't have a good understanding of how communities of bacteria grow, particularly when the growth environment changes. This leads to unpredictable growth and behaviour and holds back more widespread use of applied bacterial communities.We want to solve this problem by using synthetic biology to make bacterial communities whose growth and composition can be controlled even after they are deployed to solve a real-world application. We imagine this like a tuning knob, dialling up or down the presence of a bacterial species to get the community to behave in a certain way, even if the growing conditions have changed. As part of this work, we will also develop new types of tools to sense the nutrients that are available to a bacterial species as it grows within a community. Because bacterial growth within communities is central to many different avenues of research and development, this project has the potential to have wide ranging impacts.
在自然界中,细菌通常在多物种群落中共同生长。在社区中成长有很多好处,包括保护免受入侵者的侵害,获得额外的资源,以及共同努力完成任务的能力。基于这些好处,我们有很多方法可以利用工程菌群来造福我们。这些包括在人类和动物健康和营养方面的应用,例如作为生物医学和帮助减少抗生素的使用;在农业方面,例如改善种子和土壤健康;在生物制造中,创造更绿色的生物过程;以及作为环境挑战的解决方案,例如通过生物修复。为了安全可靠地使用工程细菌群落,我们需要它们在部署后以可预测的方式表现。不幸的是,我们仍然没有很好地了解细菌群落是如何生长的,特别是当生长环境发生变化时。这导致了不可预测的生长和行为,并阻碍了应用细菌群落的更广泛使用。我们希望通过使用合成生物学来解决这个问题,使细菌群落的生长和组成即使在部署后也可以控制,以解决现实世界的应用。我们把它想象成一个旋钮,调节细菌种类的存在,使群落以某种方式活动,即使生长条件发生了变化。作为这项工作的一部分,我们还将开发新型工具来感知细菌在群落中生长时可获得的营养物质。由于社区内的细菌生长是许多不同研究和开发途径的核心,因此该项目有可能产生广泛的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Riglar其他文献

Stepwise dissection of Plasmodium falciparum merozoite invasion of the human erythrocyte
  • DOI:
    10.1186/1475-2875-9-s2-p42
  • 发表时间:
    2010-10-20
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    David Riglar;Dave Richard;Michelle Boyle;Danny Wilson;Fiona Angrisano;Lynne Turnbull;Cynthia Whitchurch;Alan Cowman;James Beeson;Stuart Ralph;Jake Baum
  • 通讯作者:
    Jake Baum

David Riglar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Frontiers of Environmental Science & Engineering
  • 批准号:
    51224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21024805
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Engineering bacteria-based nanoplexes for melanoma immunomodulation
工程化基于细菌的纳米复合物用于黑色素瘤免疫调节
  • 批准号:
    489357
  • 财政年份:
    2023
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Operating Grants
Engineering the open porous nanofibrous microsphere integrated fibrillar hydrogel for the co-delivery of antibacterial and angiogenic agents aimed at the rapid diabetic wound repair
设计开放多孔纳米纤维微球集成纤维水凝胶,用于共同递送抗菌剂和血管生成剂,旨在快速修复糖尿病伤口
  • 批准号:
    10737115
  • 财政年份:
    2023
  • 资助金额:
    $ 12.84万
  • 项目类别:
Engineering bacterial microcompartments for biotechnology
用于生物技术的细菌微区室工程
  • 批准号:
    2898098
  • 财政年份:
    2023
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Studentship
Investigating the Assembly of Bacterial Encapsulins for the Efficient Engineering of Nanoscale Bioreactors
研究细菌封装蛋白的组装以实现纳米级生物反应器的高效工程
  • 批准号:
    2875161
  • 财政年份:
    2023
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Studentship
Engineering nanosponges to sequester bacterial exotoxins for protection against severe infection
工程纳米海绵可隔离细菌外毒素以防止严重感染
  • 批准号:
    2889873
  • 财政年份:
    2023
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Studentship
Phage-inspired engineering and evolution
噬菌体启发的工程和进化
  • 批准号:
    10552294
  • 财政年份:
    2023
  • 资助金额:
    $ 12.84万
  • 项目类别:
Demystifying virus-host interactions in Clostridioides difficile through genetic engineering of bacteriophages and the bacterial S-layer
通过噬菌体和细菌 S 层的基因工程揭开艰难梭菌中病毒与宿主相互作用的神秘面纱
  • 批准号:
    494839
  • 财政年份:
    2023
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Operating Grants
Engineering bacterial traps to understand and inspire next-generation antibiotics
设计细菌陷阱以了解和启发下一代抗生素
  • 批准号:
    2827610
  • 财政年份:
    2022
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Studentship
Metabolic model-informed engineering of a dechlorinating bacterial population to improve bioremediation
脱氯细菌群体的代谢模型知情工程可改善生物修复
  • 批准号:
    546751-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Mechanistic Investigation of Copper-Dependent Peptide Cyclases for Macrocycle Engineering
用于大环工程的铜依赖性肽环化酶的机理研究
  • 批准号:
    10464289
  • 财政年份:
    2022
  • 资助金额:
    $ 12.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了