20-BBSRC/NSF-BIO Quantum-enhanced long-range energy capture
20-BBSRC/NSF-BIO 量子增强远程能量捕获
基本信息
- 批准号:BB/W015269/1
- 负责人:
- 金额:$ 49.99万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Natural photosynthesis in major crop plants shows an overall efficiency of solar energy to biomass conversion of just 2-3%. There is great interest in improving this figure through genetic manipulation because global crop production must increase by an estimated 100-110% by 2050 to feed the projected 9-10 billion population. One option is to widen the spectral range of absorbed solar energy beyond the current limit of 720 nm. Because bacterial photosynthetic complexes use bacteriochlorophyll to absorb light in the 700-1050 nm region, synthetic biology could be used to augment plants with similar abilities. As a first step towards this goal, realising efficient energy transfer from the plant protein, LHCII, to the bacterial protein, RC-LH1, is crucial and will be furthered by the proposed work.While the overall efficiency of photosynthesis is low, the initial steps exhibit high quantum efficiency as up to 95% of absorbed photons drive a charge separation event. Understanding how the organisation and interactions within the light-harvesting network achieve this efficiency, including the proposed, yet debated, role of quantum phenomena, would provide a blueprint for artificial light-harvesting devices. Recent observations in lithographically patterned systems of in- creased energy propagation and exciton-plasmon coupling to the substrate suggest that nanoscale interactions can be enhanced through the design of these photonic systems. Previous work has probed for quantum phenomena in LHCs, and found evidence of delocalised vibrational and vibronic coherences persisting for hundreds of femtoseconds. To date, such effects have been studied with sophisticated spectroscopic techniques, yet exclusively within isolated proteins. The extent to which quantum coherence may be enhanced by non-native conformations and interactions is an open question.We propose to engineer these effects through non-native interactions within lithographically patterning arrays of LHCs and RCs, benchmarking them to near-native liposomal systems. Previously, such arrays were constructed from a single component and have only been interrogated with basic microscopic and spectroscopic methods to ensure their functionality. Here we will engender a step-change in our understanding by constructing more complex non-natural network architectures and interrogating them in unprecedented detail using the latest advanced 2D electronic and correlation spectroscopy and electron-tunnelling AFM methods. These efforts will progress biological understanding by providing mechanistic insight into the factors that promote quantum coherence at physiological temperatures and revealing the regimes where such behaviours enhance function.
主要作物的自然光合作用显示,太阳能转化为生物质的总效率仅为2- 3%。人们对通过基因操作来提高这一数字非常感兴趣,因为到2050年,全球作物产量必须增加100-110%,以养活预计的90 - 100亿人口。一种选择是将吸收太阳能的光谱范围扩大到目前720 nm的限制之外。由于细菌光合复合物使用细菌叶绿素吸收700-1050 nm区域的光,合成生物学可以用于增强具有类似能力的植物。作为实现这一目标的第一步,实现从植物蛋白LHCII到细菌蛋白RC-LH 1的有效能量转移至关重要,并将通过拟议的工作进一步推进。虽然光合作用的整体效率较低,但初始步骤表现出高量子效率,高达95%的吸收光子驱动电荷分离事件。了解光捕获网络中的组织和相互作用如何实现这种效率,包括量子现象的拟议但仍有争议的作用,将为人工光捕获设备提供蓝图。最近在光刻图案化的系统中的增加的能量传播和激子-等离子体激元耦合到衬底的观察表明,可以通过这些光子系统的设计来增强纳米级相互作用。先前的工作已经探索了LHC中的量子现象,并发现了离域振动和振动相干持续数百飞秒的证据。迄今为止,这种效应已经用复杂的光谱技术进行了研究,但仅限于分离的蛋白质。在何种程度上可以增强量子相干性的非本地构象和相互作用是一个悬而未决的问题。我们建议工程师通过非本地的LHC和RCs阵列内的光刻图案的相互作用,这些影响,基准接近本地的脂质体系统。以前,这种阵列是由单一组分构建的,并且仅用基本的显微镜和光谱方法进行询问以确保其功能。在这里,我们将通过构建更复杂的非自然网络架构,并使用最新的先进二维电子和相关光谱以及电子隧道AFM方法以前所未有的细节对其进行询问,从而使我们的理解发生重大变化。这些努力将通过提供对在生理温度下促进量子相干性的因素的机械见解,并揭示这些行为增强功能的机制,来促进生物学的理解。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matt Johnson其他文献
Do Medical Malpractice Reforms Affect Health Care Costs and Outcomes
医疗事故改革会影响医疗保健成本和结果吗
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Matt Johnson - 通讯作者:
Matt Johnson
Frequency of supervised consumption service use and acute care utilization in people who inject drugs
- DOI:
10.1016/j.drugalcdep.2024.112490 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Ayden I. Scheim;Zachary Bouck;Zoë R. Greenwald;Vicki Ling;Shaun Hopkins;Matt Johnson;Ahmed Bayoumi;Tara Gomes;Dan Werb - 通讯作者:
Dan Werb
Gender and Health in the Midwest, Metro versus Nonmetro: Insights from the National Health Interview Survey
中西部的性别与健康,地铁与非地铁:国家健康访谈调查的见解
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Christopher Connor;T. Collins;K. Pierce;Andrea Runge;PhD Allan Buttery;PhD Mehryar Nooriafshar;Owen Stanley;Salvador Garza;Matt Johnson;PhD Adee Athiyaman;PhD Chris Merrett - 通讯作者:
PhD Chris Merrett
‘Making you Aware of your Own Breathing’: Human Data Interaction, Disadvantage and Skills in the Community
“让你意识到自己的呼吸”:社区中的人类数据交互、劣势和技能
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sarah Hayes;Michael Jopling;Stuart Connor;Matt Johnson;Sally Riordan - 通讯作者:
Sally Riordan
Outmigration survival of wild Chinook salmon smolts through the Sacramento River during historic drought and high water conditions
- DOI:
10.1007/s10641-020-00952-1 - 发表时间:
2020-01-27 - 期刊:
- 影响因子:1.800
- 作者:
Jeremy J. Notch;Alex S. McHuron;Cyril J. Michel;Flora Cordoleani;Matt Johnson;Mark J. Henderson;Arnold J. Ammann - 通讯作者:
Arnold J. Ammann
Matt Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
- 批准号:
BB/Y000455/1 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Research Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
- 批准号:
BB/Y001117/1 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Research Grant
22-BBSRC/NSF-BIO Building synthetic regulatory units to understand the complexity of mammalian gene expression
22-BBSRC/NSF-BIO 构建合成调控单元以了解哺乳动物基因表达的复杂性
- 批准号:
BB/Y008898/1 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Research Grant
20-BBSRC/NSF-BIO Regulatory control of innate immune response in marine invertebrates
20-BBSRC/NSF-BIO 海洋无脊椎动物先天免疫反应的调节控制
- 批准号:
BB/W017865/1 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Research Grant
22-BBSRC/NSF-BIO - Interpretable & Noise-robust Machine Learning for Neurophysiology
22-BBSRC/NSF-BIO - 可解释
- 批准号:
BB/Y008758/1 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Research Grant
22-BBSRC/NSF-BIO: Community-dependent CRISPR-cas evolution and robust community function
22-BBSRC/NSF-BIO:群落依赖性 CRISPR-cas 进化和强大的群落功能
- 批准号:
BB/Y008774/1 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Research Grant
UKRI/BBSRC-NSF/BIO: Interpretable and Noise-Robust Machine Learning for Neurophysiology
UKRI/BBSRC-NSF/BIO:用于神经生理学的可解释且抗噪声的机器学习
- 批准号:
2321840 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
UKRI/BBSRC-NSF/BIO:Hidden costs of infection: mechanisms by which parasites disrupt host-microbe symbioses and alter development
UKRI/BBSRC-NSF/BIO:感染的隐性成本:寄生虫破坏宿主-微生物共生并改变发育的机制
- 批准号:
2322173 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
21-BBSRC/NSF-BIO: Developing large serine integrases as tools for constructing and manipulating synthetic replicons.
21-BBSRC/NSF-BIO:开发大型丝氨酸整合酶作为构建和操作合成复制子的工具。
- 批准号:
BB/X012085/1 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Research Grant
UKRI/BBSRC-NSF/BIO Determining the Roles of Fusarium Effector Proteases in Plant Pathogenesis
UKRI/BBSRC-NSF/BIO 确定镰刀菌效应蛋白酶在植物发病机制中的作用
- 批准号:
BB/X012131/1 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Research Grant