Gentler Imaging

更温和的成像

基本信息

  • 批准号:
    BB/X003329/1
  • 负责人:
  • 金额:
    $ 22.46万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Imaging living cells using optical microscopy is challenging. The light used in optical microscopy often damages the biological system under investigation, and the better resolution we require, the more light is needed. This makes studing the important living processes that occur both rapidly and at the size limits of what can be observed with light microscope almost impossible without the development of new, innovative solutions.Often a single microscope can perform a single imaging modality, so a researcher wanting to image at a number of different resolutions / light intensities would have to move the sample between microscopes. We propose a versatile imaging platform that can switch between imaging modalities. This is useful because it allows us to image a biological system with minimal light, until the event we are interested in occurs. At the time something interesting happens we then want to automatically switch between the low resolution low damage mode to a high resolution, higher photon flux mode - specially in the area where the interesting event is occurring. To automate this process we will train a neural network to study the low resolution images as they are produced and under specific conditions swap to the high resolution mode. This will dramatically reduce the amount of photo damage, allowing the biological event to be observed in much greater detail than previously possible.The example we will use as a proof of concept is the engulfment and killing of microbes by amoebae. This happens in much the same way that our immune cells use to clear the body of pathogens to protect us from infection. The amoeba cells provide a convenient model to understand this, as well as a simple test system for microscope development. The engulfment process, known as phagocytosis, occurs when amoeba or immune cells touch their prey and enwrap them. This will be used to act as a trigger to stimulate the imaging platform to switch to the higher resolution modality, specifically around the microbe being eaten. This will prevent photodamaging the sample prior to engulfment, and allow us to focus the precious light precisely when and where it is needed to understand how engulfment and killing occur. This spatial and temporally selective high-resolution imaging will then be combined with novel camera technology to ensure that each pixel in the image is captured at the optimal signal-to-noise. This will allow users to ensure that the maximal information is obtained from each experiment. Combined, these technologies will dramatically improve our ability to observe a host of important biological events, by overcoming the main limitation of current microscopy.
使用光学显微镜为活细胞成像是一项具有挑战性的工作。光学显微镜中使用的光经常破坏被研究的生物系统,我们要求的分辨率越高,需要的光就越多。这使得如果不开发新的创新解决方案,就几乎不可能在光学显微镜所能观察到的尺寸范围内快速地研究重要的生命过程。通常,一台显微镜可以执行单一的成像模式,所以想要以多种不同的分辨率/光强度成像的研究人员必须在显微镜之间移动样本。我们提出了一个通用的成像平台,可以在成像模式之间切换。这很有用,因为它允许我们用最少的光线想象一个生物系统,直到我们感兴趣的事件发生。当一些有趣的事情发生时,我们想要自动在低分辨率、低损害模式之间切换到高分辨率、高光子流模式--特别是在发生有趣事件的区域。为了自动化这个过程,我们将训练一个神经网络来学习低分辨率图像的产生,并在特定条件下切换到高分辨率模式。这将极大地减少光损伤的量,使我们能够比以前更详细地观察生物事件。我们将使用阿米巴吞噬和杀死微生物作为概念验证的例子。这与我们的免疫细胞用来清除体内病原体以保护我们免受感染的方式大致相同。阿米巴细胞为理解这一点提供了一个方便的模型,也为显微镜的发展提供了一个简单的测试系统。吞噬过程称为吞噬作用,当阿米巴或免疫细胞接触猎物并将其包裹时,就会发生吞噬过程。这将被用来作为触发器,刺激成像平台切换到更高分辨率的模式,特别是在被吞噬的微生物周围。这将防止在吞噬之前对样本进行光破坏,并使我们能够准确地在需要的时间和地点聚焦宝贵的光,以了解吞噬和杀戮是如何发生的。这种空间和时间选择性的高分辨率成像然后将与新的相机技术相结合,以确保以最佳信噪比捕获图像中的每个像素。这将使用户能够确保从每次实验中获得最大的信息。结合起来,这些技术将通过克服当前显微镜的主要限制,极大地提高我们观察一系列重要生物事件的能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashley Cadby其他文献

Combinefluent: An Open Source, Low-Cost Laser System for Single-Molecule Microscopy
  • DOI:
    10.1016/j.bpj.2020.11.1275
  • 发表时间:
    2021-02-12
  • 期刊:
  • 影响因子:
  • 作者:
    Dylan George;Ashley Cadby;Timothy D. Craggs
  • 通讯作者:
    Timothy D. Craggs

Ashley Cadby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ashley Cadby', 18)}}的其他基金

Functional Imaging: Atomic Force Imaging using probes functionalized with modified enzymes.
功能成像:使用经过修饰的酶功能化的探针进行原子力成像。
  • 批准号:
    EP/H034706/1
  • 财政年份:
    2011
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Research Grant
Giants of the Infinitesimal
无穷小巨人
  • 批准号:
    EP/G063389/1
  • 财政年份:
    2009
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Research Grant
Directed Reconfigurable Nanomachines
定向可重构纳米机器
  • 批准号:
    EP/F010109/1
  • 财政年份:
    2008
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Research Grant
Apertureless scanning near-field optical studies of energy and charge transfer in molecular materials for opto-electronic devices.
用于光电器件的分子材料中能量和电荷转移的无孔径扫描近场光学研究。
  • 批准号:
    EP/E059716/1
  • 财政年份:
    2007
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Fellowship

相似国自然基金

非小细胞肺癌Biomarker的Imaging MS研究新方法
  • 批准号:
    30672394
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSFGEO-NERC: Imaging the magma storage region and hydrothermal system of an active arc volcano
NSFGEO-NERC:对活弧火山的岩浆储存区域和热液系统进行成像
  • 批准号:
    NE/X000656/1
  • 财政年份:
    2025
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Research Grant
NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
  • 批准号:
    NE/Z000254/1
  • 财政年份:
    2025
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Research Grant
Deep imaging for understanding molecular processes in complex organisms
深度成像用于了解复杂生物体的分子过程
  • 批准号:
    LE240100091
  • 财政年份:
    2024
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Novel chelators for Scandium-44 in PET imaging of prostate cancer
用于前列腺癌 PET 成像的新型 Scandium-44 螯合剂
  • 批准号:
    2904564
  • 财政年份:
    2024
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Studentship
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
  • 批准号:
    EP/Y036654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Research Grant
MagTEM2 - the next generation microscope for imaging functional materials
MagTEM2 - 用于功能材料成像的下一代显微镜
  • 批准号:
    EP/Z531078/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Research Grant
Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
  • 批准号:
    EP/Z531133/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Research Grant
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X007669/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Research Grant
ERI: Non-Contact Ultrasound Generation and Detection for Tissue Functional Imaging and Biomechanical Characterization
ERI:用于组织功能成像和生物力学表征的非接触式超声波生成和检测
  • 批准号:
    2347575
  • 财政年份:
    2024
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
NeTS: Small: NSF-DST: Modernizing Underground Mining Operations with Millimeter-Wave Imaging and Networking
NeTS:小型:NSF-DST:利用毫米波成像和网络实现地下采矿作业现代化
  • 批准号:
    2342833
  • 财政年份:
    2024
  • 资助金额:
    $ 22.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了