GENADAPT - Genotypic and Environmental Adaptation through Data Driven Prediction Techniques
GENADAPT - 通过数据驱动的预测技术进行基因型和环境适应
基本信息
- 批准号:BB/X005925/1
- 负责人:
- 金额:$ 20.06万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The sustainable intensification of UK agriculture is a major challenge that will require many innovations to address. One key aspect centres on the need to improve our cereal crops to enable higher yields in the same land area, and under variable and unpredictable climates. The primary cereal crop in the UK is wheat (Triticum aestivum), the yield of which is highly variable depending on environmental conditions. However, the development of improved and regionally adapted wheat is a slow process which remains reliant on trial and error of multiple crosses and in-field phenotypic selection. A further limitation is that the current approach produces a new cultivar which is improved only for the region it has been selected in, therefore the process has to be repeated in multiple different regions making it extremely labour intensive.Ideally, we need a method which will accelerate the adaptation process so that fewer crosses are required and therefore less time is wasted growing and phenotyping plants. As part of this, the use of mathematical models has been important and has resulted in accelerated methods for future yield predictions. However, mathematical modelling has so far not fully utilised the new wave of data developed from genomic selection and large scale field-based phenotyping. In this project we will combine the genetic, environmental and field phenotyping data to enable genetic-based predictions for target environments. We will achieve this by combining our understanding of the genes involved in flowering time adaptation in bread wheat machine learning models that can test genetic hypothesise. Through controlling the genetic combinations which are used by the machine learning models we will be able to derive new understanding regarding novel genetic combinations and how the defined genetic combinations perform under specified environmental conditions. We will then challenge this new understanding by measuring flowering time responses under controlled cabinet conditions which mimic the environmental conditions used in the model.The outcomes of this project will be the development of genetically driven machine learning models which can make precise predictions regarding flowering time of our primary arable crop, wheat. These predictions will be experimentally tested under realistic conditions in controlled growth cabinets. Secondly, the project will provide a practical framework which can be applied to new environmental conditions and therefore for different target countries.
英国农业的可持续集约化是一个重大挑战,需要许多创新来解决。一个关键方面是需要改进我们的谷类作物,以便在相同的土地面积上,在多变和不可预测的气候下实现更高的产量。英国的主要谷类作物是小麦(Triticum aestivum),其产量因环境条件而变化很大。然而,改良和区域适应性小麦的开发是一个缓慢的过程,仍然依赖于多次杂交和田间表型选择的试错。另一个限制是,目前的方法产生的新品种只针对它所选择的地区进行改良,因此该过程必须在多个不同的地区重复进行,这使得劳动强度非常大。理想情况下,我们需要一种方法来加速适应过程,从而需要更少的杂交,因此浪费更少的时间种植和表型植物。作为其中的一部分,数学模型的使用一直很重要,并导致了未来产量预测的加速方法。然而,数学建模到目前为止还没有充分利用从基因组选择和大规模基于田间的表型分析中开发的新一波数据。在这个项目中,我们将结合联合收割机的遗传,环境和现场表型数据,使基于遗传的预测目标环境。我们将通过结合我们对面包小麦机器学习模型中开花时间适应基因的理解来实现这一目标,这些模型可以测试遗传假设。通过控制机器学习模型所使用的遗传组合,我们将能够获得关于新的遗传组合以及所定义的遗传组合在特定环境条件下如何表现的新理解。然后,我们将通过在模拟模型中使用的环境条件的受控橱柜条件下测量开花时间响应来挑战这一新的理解。该项目的成果将是开发基因驱动的机器学习模型,该模型可以精确预测我们的主要耕地作物小麦的开花时间。这些预测将在受控生长柜中的现实条件下进行实验测试。第二,该项目将提供一个切实可行的框架,可适用于新的环境条件,从而适用于不同的目标国家。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Climate change enhances stability of wheat-flowering-date.
气候变化增强了小麦花期的稳定性。
- DOI:10.1016/j.scitotenv.2024.170305
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:He Y
- 通讯作者:He Y
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laura Dixon其他文献
“Placing” Space: Exploring the Sociospatial Impacts of Cosmopolitan Place-Marketing Approaches on British Migrants in Spain
“安置”空间:探索国际化地方营销方法对西班牙英国移民的社会空间影响
- DOI:
10.1177/1206331219845293 - 发表时间:
2019 - 期刊:
- 影响因子:1
- 作者:
Laura Dixon - 通讯作者:
Laura Dixon
‘Block teaching’ – exploring lecturers’ perceptions of intensive modes of delivery in the context of undergraduate education
“分块教学”——探讨本科教育背景下讲师对强化授课模式的看法
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:2.3
- 作者:
Laura Dixon;Valerie O’Gorman - 通讯作者:
Valerie O’Gorman
Calling All Mares: Community, Identity, and Group Sex at the San Francisco Horse Market.
呼叫所有母马:旧金山马市场的社区、身份和群交。
- DOI:
10.1080/00224499.2023.2236088 - 发表时间:
2023 - 期刊:
- 影响因子:3.6
- 作者:
Lindsey Gaston;Laura Dixon - 通讯作者:
Laura Dixon
A want or a need? Exploring the role of grassroots gay rugby teams in the context of inclusive masculinity
想要还是需要?
- DOI:
10.1080/09589236.2019.1621158 - 发表时间:
2020 - 期刊:
- 影响因子:1.7
- 作者:
Lindsey Gaston;Laura Dixon - 通讯作者:
Laura Dixon
The role of the district nurse in caring for patients with dementia.
地区护士在护理痴呆症患者中的作用。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Laura Dixon;H. Thompson - 通讯作者:
H. Thompson
Laura Dixon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laura Dixon', 18)}}的其他基金
Tuning into plant development to improve the sustainability of arable farming
调整植物开发以提高耕作的可持续性
- 批准号:
MR/Y011708/1 - 财政年份:2024
- 资助金额:
$ 20.06万 - 项目类别:
Fellowship
BBSRC Institute Strategic Programme: Delivering Sustainable Wheat (DSW) Partner Grant
BBSRC 研究所战略计划:提供可持续小麦 (DSW) 合作伙伴赠款
- 批准号:
BB/X019667/1 - 财政年份:2023
- 资助金额:
$ 20.06万 - 项目类别:
Research Grant
Understanding adaptation to increase temperature robustness in wheat
了解提高小麦温度鲁棒性的适应性
- 批准号:
MR/S031677/1 - 财政年份:2019
- 资助金额:
$ 20.06万 - 项目类别:
Fellowship
相似海外基金
Genotypic Phenotypic and Metabolic Characterisation of Skin Sentinels
皮肤哨兵的基因型表型和代谢特征
- 批准号:
BB/Y512576/1 - 财政年份:2023
- 资助金额:
$ 20.06万 - 项目类别:
Training Grant
Genotypic discrimination and phylogeography of harmful red tide causative dinoflagellates in Asian Pacific coastal waters
亚太沿海水域有害赤潮致病甲藻的基因型辨别和系统发育地理学
- 批准号:
23KK0117 - 财政年份:2023
- 资助金额:
$ 20.06万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Phenotypic and Genotypic diversity in Moraxella catarrhalis: Using Population Biology to Understand Antimicrobial Resistance and Pathogenesis
卡他莫拉氏菌的表型和基因型多样性:利用群体生物学了解抗菌素耐药性和发病机制
- 批准号:
2749867 - 财政年份:2022
- 资助金额:
$ 20.06万 - 项目类别:
Studentship
Genotypic and phenotypic variation during adaptation in fungal microbes
真菌微生物适应过程中的基因型和表型变异
- 批准号:
RGPIN-2019-05867 - 财政年份:2022
- 资助金额:
$ 20.06万 - 项目类别:
Discovery Grants Program - Individual
Integrated Genotypic, Phenotypic and Immunologic Analysis of Ethnically Diverse Prostate Cancers
不同种族前列腺癌的综合基因型、表型和免疫学分析
- 批准号:
10436113 - 财政年份:2022
- 资助金额:
$ 20.06万 - 项目类别:
Genotypic and Phenotypic Analyses of Hybridization in a Basidiomycete Yeast
担子菌酵母杂交的基因型和表型分析
- 批准号:
RGPIN-2020-05732 - 财政年份:2022
- 资助金额:
$ 20.06万 - 项目类别:
Discovery Grants Program - Individual
Integrated Genotypic, Phenotypic and Immunologic Analysis of Ethnically Diverse Prostate Cancers
不同种族前列腺癌的综合基因型、表型和免疫学分析
- 批准号:
10589064 - 财政年份:2022
- 资助金额:
$ 20.06万 - 项目类别:
Defining the Pathogenic Contribution of High Genotypic MIF Expression
定义高基因型 MIF 表达的致病贡献
- 批准号:
10402761 - 财政年份:2021
- 资助金额:
$ 20.06万 - 项目类别:
Defining the Pathogenic Contribution of High Genotypic MIF Expression
定义高基因型 MIF 表达的致病贡献
- 批准号:
10624334 - 财政年份:2021
- 资助金额:
$ 20.06万 - 项目类别:
Alcohol metabolism and disease risk in Asians: Examining the impact of personalized phenotypic/genotypic feedback and motivational processes on early drinking trajectories
亚洲人的酒精代谢和疾病风险:检查个性化表型/基因型反馈和动机过程对早期饮酒轨迹的影响
- 批准号:
10404917 - 财政年份:2021
- 资助金额:
$ 20.06万 - 项目类别:














{{item.name}}会员




